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Introduction

[ .
» Massively parallel architecture: > 1000 SPs
» High performance

e >1 Tflop/s (double-precision)

e >4 Tflop/s (single-precision)
streaming multlgrocessor (SM)
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Introduction

» Power Is the first-order constraint for GPUs

e Power of modern high-performance GPUs: ~250W
e High energy consumption
 High requirements of chip cooling technigques
 Reliability problems

GPU

NVIDIA GTX580 2010 244 N
NVIDIA GTX690 2012 300 W
NVIDIATITAN 2013 250 W
NVIDIA K40 2013 235 W
AMD 7970 2012 225 W

AMD 7990 2013 300 W




Introduction

» Another challenge of modern ICs: aging effect

e Negative bias temperature instability (NBTI): the major
aging issue in nano-scale ICs

e 20%-30% performance degradation after 3 years @ 45nm,
32nm, 22nm [Roy, D&T 2013]
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Motivation

» Low utilization of compute resources when running
memoryo-intensive/bandwidth-bound kernels

ratio of compute utilization to bandwidth utilization
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e Compute resources often idle (waiting for memory)

» The more SMs the better’?
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e Off-chip memory bandwidth is saturated, increasing SMs cannot
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» Power-gate some SMs when running memory-
iIntensive/bandwidth-bound kernels

e Power saving T
e NBTI recovery [ CiI’CUitJ e 4”;:7

e Low overhead block

Circuit
block
sleep —|

L

» Key problem: what is the optimal number of SMs for
a given kernel?

e |t depends on the inputs, cannot be obtained offline



Contributions

» A run-time framework for simultaneous aging and
power optimization for GPGPUs

e Observation: memory-intensive/bandwidth-bound kernels
achieve the best performance with only a portion of SMs
« The off-chip memory bandwidth is saturated

e Method: shut down some SMs at run-time

« A modified performance model is used to predict the optimal
number of SMs online before executing a kernel

e Effect: power reduction and aging mitigation



Our solution

> Run- tlme framework .Compute cycles,
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Our solution

> Performance model
e The bandwidth is not saturated
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e The bandwidth is saturated

idle due to limited MWP
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Our solution

» Online optimization algorithm

Algorithm 1: Finding the optimal GPU configurations

o

MoE W

L=l R R =
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Input: the kernel (PTX code), the problem size, number of
threads, and GPU parameters: Bandwidth, f,

GlobalMem Latency, CacheLatency, CacheMissRate

Output: optimal #SM (optSM ), and SM assignment

Evaluate the execution cycles using maximum #SM, denoted by

C‘J‘T‘Lrl—l‘:

for k=(mazimum #SM) to (minimum allowed #SM) do

Evaluate the execution cycles using &k SMs, denoted by Cp
if ¢, < C,,... then
|_ optSM = k;

if optSM ==mazimum #SM then
for k=(mazimum #SM) to (minimum allowed #SM) do
if Cr < (14 6)Craz then
L optSM = k;

Read NEBETI-induced per-SM Vi, shitt from the NB'T1 sensors;
Assign the optSM SMs with the lowest degradation rates to
execute the kernel, other SMs are power-gated:

Find the optimal number
of SMs through the
performance model

Assign SMs with the
minimum aging rate,
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Experimental setup

i
» Benchmarks

e CUDA SDK example
e Rodinia [Che, ISWC'09]
e Real-world kernels

» Performance and power evaluation: GPGPU-SIm
[Bakhoda, ISPASS'09] WIth GPUWattch [Leng, 1IscaA13]

» NBTI evaluation: NBTI analytical model [shardwaj, ciccos]

» Temperature evaluation: Hotspot [Huang, ISPASS'09]
e For NBTI calculation

» Baseline: GPU (16 SMs) without power gating
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Simulation results

» Optimal #SM and analysis time
Table 2: Results of the optimization algorithm.

benchmark optimal #SM  online analysis time (us)

BSRT T 3.1
FWT 15 2.5
HIST 15 2.8

LU 12 2.2
RED 15 2.2
RNG 11 2.1
RSRT 8 2.5
SCPR 14 2.7
MT 15 2.6
VAD 9 2.3
GAUS 13 3.0
PATH 15 2.8
HTSP 15 2.8

NN 15 2.5
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Simulation results

» Performance degradation: < 1%

e Caused by shutting down some SMs and the online
optimization algorithm

» Power reduction: 19%
» Energy reduction: 18%
» Reduction in NBTI-induced Vth shift; 34%

13



Simulation results

B
» Our technique is implemented at run-time, it can

handle different problem sizes

Table 3: Results of PATH, under different input sizes.

input optima,ll normalized NBTI power energy
size #SM | execution time mitigation saving saving
1000 4 0.804 56.9% 81.9% 85.4%
2000 7 1.016 54.9% 63.8% 63.2%
3000 10 0.988 49.1% 39.2%  40.0%
4000 12 1.046 44.7% 28.5% 25.2%
5000 15 1.003 27.3% 4.8% 4.5%

Table 4: Results of VAD, under different input sizes.

input optima normalized NBTI power energy

size #SM | execution time mitigation saving saving
5000 ) 0.992 54.0% 64.2% 64.4%
10000 7 1.027 53.7% 44.6%  43.1%
30000 9 1.015 48.2% 35.0% 34.0%
50000 9 1.016 48.3% 36.5% 35.5%




» Memory-intensive/bandwidth-bound kernels do not
need all the compute resources

e Memory bandwidth is saturated when using a portion of
SMs
» A predictive shutting down framework to perform
power gating for SMs in GPUs

e A modified performance model is used to predict the
optimal number of SMs

e Assign SMs with the minimum aging rate, power gate other
SMs

e NBTI mitigation and power reduction are both achieved
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Thanks for your attention
Q&A
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