
Enabling FPGAs in the Cloud

Fei Chen1, Yi Shan2, Yu Zhang1, Yu Wang2,
Hubertus Franke3, Xiaotao Chang1, Kun Wang4

∗

1IBM China Research Lab, Beijing, China {uchen, zhyu, changxt}@cn.ibm.com
2Tsinghua University, Beijing, China {shany04@gmail.com, yu-wang@mail.tsinghua.edu.cn}

3Thomas J. Watson Research Center, New York, USA {frankeh@us.ibm.com}
4Microsoft ARD, China Innovation Group, Beijing, China {kuwang@microsoft.com}

ABSTRACT
Cloud computing is becoming a major trend for delivering
and accessing infrastructure on demand via the network.
Meanwhile, the usage of FPGAs (Field Programmable Gate
Arrays) for computation acceleration has made significant
inroads into multiple application domains due to their a-
bility to achieve high throughput and predictable latency,
while providing programmability, low power consumption
and time-to-value. Many types of workloads, e.g. databases,
big data analytics, and high performance computing, can be
and have been accelerated by FPGAs. As more and more
workloads are being deployed in the cloud, it is appropri-
ate to consider how to make FPGAs and their capabilities
available in the cloud. However, such integration is non-
trivial due to issues related to FPGA resource abstraction
and sharing, compatibility with applications and accelerator
logics, and security, among others. In this paper, a general
framework for integrating FPGAs into the cloud is proposed
and a prototype of the framework is implemented based on
OpenStack, Linux-KVM and Xilinx FPGAs. The prototype
enables isolation between multiple processes in multiple VM-
s, precise quantitative acceleration resource allocation, and
priority-based workload scheduling. Experimental results
demonstrate the effectiveness of this prototype, an accept-
able overhead, and good scalability when hosting multiple
VMs and processes.

Keywords
FPGA virtualization, Cloud, Reconfiguration and Heteroge-
neous computing.

1. INTRODUCTION
Cloud computing is becoming a major trend for deliv-

ering and accessing computation resources and services on
demand over the network. Dominant enterprise IT ven-

∗The work was done when Kun Wang was with IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CF’14, May 20 - 22 2014, Cagliari, Italy
Copyright 2014 ACM 978-1-4503-2870-8/14/05 ...$15.00.
http://dx.doi.org/10.1145/2597917.2597929.

dors, e.g. IBM, Oracle, Cisco, etc., and Web companies
(e.g. Amazon, Google) have all delivered cloud solutions
(Pure, ExaData, UCS, AWS, Google Compute Engine) lead-
ing the transformation from traditional IT infrastructures to
the cloud.

Meanwhile, FPGAs are attractive in many computational
domains because of their ability to get performance close to
ASIC technology, achieving high throughput and predictable
latency, while simultaneously providing better programma-
bility and low power consumption. These features can create
significant business value as they enable acceleration tech-
nologies that require flexibility and time-to-market which
cannot be achieved by a general processor design. More and
more business systems are deploying FPGAs as a critical
component to achieve overall system performance. Exam-
ples are Netezza in enterprise databases [4], Convey in HPC
and big data analytics [3], Maxeler in financial data process-
ing [22], and Solace in message middleware [5], to mention
a few. Continuous advances in FPGA technology that will
further drive their adoption.

Modern FPGA chips provide ever richer programmable
logic resources of miscellaneous types, which leads to un-
precedented computing capacity of a single FPGA chip. As
an example, a Xilinx Virtex-7 2000T (2011) can host 120
AES crypto accelerators or 260 ARM7 processor cores. Par-
tial reconfiguration techniques allow a FPGA chip to be par-
titioned into regions. Circuits in one region can be recon-
figured at runtime without interfering with circuits in other
regions, significantly increasing the flexibility of FPGA us-
age. To increase development productivity and shorten the
time-to-market, novel high-level programming models and
toolchains have been introduced, including OpenCL [19],
Lime [8], etc.

With the simultaneous rise in popularity for both the
cloud and FPGAs, it is to be expected that the demand for
deploying FPGA-based applications in cloud environments
will grow. As a reference, a similar demand for GPGPUs
was previously observed and nowadays GPGPU resources
are common in cloud environments, e.g. AWS. Our work
treats FPGAs as programmable resources that can be re-
configured as on-demand devices. However, integrating such
kind of FPGA resources into the cloud is nontrivial. Accord-
ing to our analysis, there are four fundamental requirements
that need to be addressed. These are now introduced at a
high level and then described further on in more detail.

1. Abstraction: FPGAs must be exposed to the cloud
stack as a resource pool that can be actively managed, i.e.
it can be requested, allocated and deallocated by a tenant.

Its usage must be tracked in order to facilitate billing that
is associated with the public cloud model. In addition, once
provided to a tenant, the FPGA must be programmable by
the tenant similar to other resources such as CPUs and G-
PUs. However, traditional system software stacks, i.e. oper-
ating system and hypervisor, consider FPGAs only as fixed-
functional acceleration devices while ignoring their nature
of programmability.
2. Sharing: Sharing and isolation of resources is a desired

and natural requirement for all resources in the cloud. FP-
GA resources should follow this model and enable sharing
among multiple tenants and their applications in order to
maximize resource utilization. This obvious trend of shar-
ing is most recently visible in the GPU domain where G-
PUs were initially limited to only one user/tenant per host.
However this restriction has eased as Nvidia now provides
hardware support for multi-tenancy in its latest Kepler ar-
chitecture GPU [21].
3. Compatibility: Users have dependencies on the e-

cosystem (tools, libraries) that support FPGA usage. Typi-
cally there is a tight coupling between specific FPGAs, their
tool chains and the applications and libraries that are writ-
ten for a specific FPGA. In many cases there are no standard
application binary interfaces (ABI) yet released. To enable
transition into the cloud, one must provide the ecosystem
and the SDKs in the same manner as they are available in
stand alone environments.
4. Security: One of the most quoted concerns for a faster

cloud adoption is security. Sharing of resources depends on
proper isolation. As FPGAs were not designed for multi-
tenancy but for single users, security features must be in-
troduced in order to enable FPGA usage in the cloud. FG-
PA accelerators typically run with full hardware access and
hence a single malicious tenant can bring down a complete
shared compute host. Though there are techniques to ease
the impact and initially enable FPGAs in the kernel, se-
curity is best addressed by FPGA manufacturers through
additional hardware changes. This paper identifies some of
the existing problems and does some initial but limited work
to address security with the current available technology.
We believe solving the above four requirements are nec-

essary steps for cloud enablement and we focus on them in
this paper. Additional problems, such as FPGA scalability
among multi-nodes, are not discussed in this paper. The
contributions of this paper can be summarized as follows:
(i) Four major requirements for enabling FPGAs into the

cloud are analyzed. This paper not only discusses the prob-
lems with current techniques, but also provides guidance for
enabling FPGAs in cloud.
(ii) An accelerator pool (AP) abstraction is proposed,

which abstracts FPGA as a consumable resource while avoid-
ing hardware dependencies of current FPGA techniques.
(iii) A hardware and software co-design is provided as the

framework for integrating FPGAs in a cloud. A service logic
(SL) is introduced into a FPGA chip to help address the
requirements.
(iv) A prototype of the framework is implemented on an

x86-based Linux-KVM environment with attached Xilinx F-
PGAs, and deployed in a modified OpenStack [2] cloud en-
vironment. Experiments are conducted to both verify func-
tional correctness and evaluate performance of the proto-
type. The overhead introduced by our framework, when
compared to native dedicated execution, is less than 10% in

most cases and at most 25% for small workload data sizes.
Meanwhile the latency overhead introduced by virtualiza-
tion for each acceleration job is approximately 4 microsec-
onds.

The remaining part of the paper is organized as follows:
Section 2 introduces related work. Section 3 provides de-
tails and solutions for the four topics mentioned in section
1. Section 4 details the design of our framework for FP-
GA cloud enablement and describes the prototype imple-
mentation. Section 5 discusses experiments and section 6
concludes the paper.

2. RELATED WORK
There are a number of research efforts attempting to make

FPGAs general- purpose computation resources. BORPH [9]
is a well known project working on providing an OS for cre-
ating hardware-based processes and providing FPGA hard-
ware abstractions and management. This work provides in-
terfaces for a hardware thread in the FPGA, so that the
hardware thread operates like a software thread on the CPU.
Several works about multitasking on FPGA coprocessors or
reconfigurable hardware (RH) within processors have been
published, such as [27, 13, 25]. These projects focused on
accelerator scheduling in reconfigurable hardware based on
non-virtualized environments. They provide valuable ex-
periences on resource scheduling, however this is not the
fundamental problem when enabling FPGA in cloud. Oth-
er previous work refers to terms like FPGA virtualization
and virtualized reconfigurable hardware, such as [23], as
transparently scheduling and reconfiguring FPGA to mul-
tiple jobs as FPGA virtualization. However this is not done
in the context of cloud requirements.

Providing an abstraction layer for FPGAs was proposed
in both [20] and [16]. Such a layer provides a decoupling be-
tween FPGA logics and software, which implies good porta-
bility for both FPGA logics and applications. The work
in [12] discussed FPGA being used in a distributed system.
However neither virtualization nor quantitative resource al-
location is addressed. [26] presented FPGAs working in Xen
virtualized environment in a single computing node, though
not addressing the FPGA dynamical configuration and cloud
requirements.

Various papers discussed the security problem with FP-
GAs in the cloud. For example, the paper [11] proposed a
method to configure private accelerators into FPGA if the
user did not trust the system administrator. It focused on
identifying the accelerators but not on the behavior of ac-
celerators. [6] used FPGAs to build a secure database appli-
cation, focusing on the security of applications but not the
security of the system.

Another approach focuses on using a high-level program-
ming model, e.g. OpenCL and Lime [7], to abstract FPGA
resources. Although not directly helping FPGA resources to
be shared in the cloud, they can help to grow broader accep-
tance and utilization for FPGAs and help build a protable
ecosystem.

Resource management of GPGPUs attracts significant at-
tention. Both PTask [24] and Gdev [18] are representative
works for extending OSs and placing GPGPUs directly un-
der OS management.

Pegasus [15] considers GPGPUs as peers to CPUs and
provides a unified resource abstraction and workload schedul-
ing mechanism. However, from an architecture perspective,

a GPU consists of 100s of homogeneous cores, which is differ-
ent from a FPGA as a system consisting of heterogeneous
resources. This difference implies that we cannot simply
reuse GPGPU resource management mechanisms for FPGA.
To achieve cloud resource abstraction and sharing, critical
functions must be implemented as logic in a FPGA chip,
which is not possible for commodity GPGPUs.

3. ENABLING FPGA IN CLOUD
Four key requirements have been raised in Section 1 for

FPGA enablement in a cloud and they are analyzed and
addressed in this section in the context of our framework, as
shown in Figure 1.

FPGA

Guest Process

APIs

Utilities

Bitfile

Library

HW

Modules

Guest

 OS

Guest

Control

Module

Guest

Driver

Virtual

FPGA Utilities Driver

 Hypervisor Host Control Module Host Driver

Service Logic FPGA Hardware

APIs Bitfile Library Library

Openstack

Agent

DRAM

Control Node

Scheduler

Compute

 Node

Compute Node

Openstack-based Cloud
Tenant

Tenant

Virtual

Machine

Figure 1: FPGA framework in a cloud

Except for the modules in gray, Figure 1 shows the typ-
ical components of an OpenStack-based cloud. A number
of compute nodes, each of which is a physical machine, pro-
vide physical resources including CPUs, memory, disks and
networking. A control node handles requests from tenants,
schedules resources and creates virtual machines (VMs) on
selected physical machines. Tenants then get access to their
virtual machines and deploy applications on them.
In order to introduce FPGAs into a cloud, we provide new

modules to the compute nodes, as shown in grey in Figure
1. In addition, the scheduler in the OpenStack control n-
ode is enhanced. These modules will be described in this
section, and the implementation details will be introduced
in Section 4. To facilitate our description, we divide the
system stack of the compute nodes into 4 layers: hardware,
hypervisor, library and application.

3.1 FPGA Resources Abstraction
In order for FPGAs to become resources that can be con-

sumed by tenants, miscellaneous types of resources in FP-
GA chips and FPGA-centric cards must be abstracted into
a manageable resource pool, similar to CPU and memory
resources. A straight-forward approach for abstracting F-
PGAs is a programmable resource pool (PRP), in which
FPGAs are abstracted into an set of resources including reg-
isters, LUTs, memory, etc. and placed under the manage-
ment of the cloud system. A tenant can issue requests for
an arbitrary amount of registers, LUTs, and memory and
the the controller provides a virtual FPGA chip consisting
of what was requested. The tenant can work with the virtu-
al FPGA , e.g. developing logics following a normal design

flow, unaware of the virtualization taking place in the cloud
environment.

Although the PRP abstraction aligns well with the na-
ture of both FPGA and cloud, it is not feasible in current
clouds. The reason relates to the current FPGA chips ca-
pabilities and their development tool chains. To generate a
FPGA bitfile, real hardware details of an FPGA chip, in-
cluding its type and specification, which area in the chip
the bitfile will be configured into, etc. must be exposed to
the current tool chain. Also, a generated bitfile can only
be configured into a specific area within a specified type of
the FPGA chip. Those restrictions introduce security con-
cerns and flexibility problem in the cloud. Therefore, unless
FPGA chips and tool chains support generating hardware-
independent bitfiles, i.e. support stronger virtualization, the
PRP abstraction is hard to consume in the cloud.

As an alternative, we propose an accelerator pool (AP) ab-
straction as a trade-off between current FPGA limitations
and cloud principles. In the AP abstraction, each FPGA
chip has several pre-defined accelerator slots, e.g. slots A,
B, C and D shown in Figure 2. By using the dynamic par-
tial reconfiguration mechanism of modern FPGAs, each slot
can be considered as a virtual FPGA chip with standardized
resource types, capacity and interfaces. Therefore, each s-
lot can only host an accelerator with compatible resource
requirements and interface design. In non-cloud environ-
ments, [10] and [14] discuss usage of this feature. Using AP,
FPGA chips become a pool of accelerators with various func-
tions and performance. Instead of requesting programmable
resources in PRP, a tenant directly requests various combi-
nation of accelerator functions and performance. A cloud
provides a list of pre-defined accelerators, handles tenant
requests and configures accelerators into idle slots. If no ac-
celerator matches the requirements, a tenant can submit his
own designs and the cloud owner performs the compilation
and adds the tenant design into the accelerator list.

Due to a level of standardization, AP provides a more
feasible and consumable approach to introducing FPGAs
into the cloud. An accelerator design following standard-
s can be mapped into standard slots. The designer cares
about the specification of slots, instead of FPGA chip de-
tails. The cloud owner will compile various designs for all
compatible slots with a predictable cost. Also, such mecha-
nism enables an application utilizing FPGAs to be deployed
without location dependency. Additionally, cloud systems
can approach resource management more easily because s-
tandard slots lead to regular resource allocation. Additional
advantages of AP is that both accelerator bandwidth and
acceleration job priorities become manageable resources. A
major limitation of AP is that tenants can not generate bit-
files and configure them into FPGAs as the FPGA hardware
details are transparent. This limitation can not be removed
before tool chains generate hardware independent bitfile.

To support AP, a service logic (SL) module inside the
FPGA is introduced in the hardware layer of our system
stack. The SL provides standard interfaces for in-slot ac-
celerators. It facilitates accelerator bandwidth and priority
management. In the cloud, the control node selects appro-
priate compute nodes that have the desired available FPGA
resources for tenants, and the host control module(HCM) in
the selected node finds FPGA slots and configures accelera-
tors via the service layer. Inside VMs, a guest control mod-
ule(GCM) is introduced to achieve accelerator bandwidth

and priority management.

3.2 FPGA Sharing
Given the above description of FPGA slots and assign-

ment to different tentants, sharing of FPGA resources is a
key requirement. FPGA sharing by multiple applications
has been discussed in [10, 28, 17]. With sharing physical
resources security issues arise. Proper virtualization support
that guarantees isolation among tenants is required. Since
FPGAs were designed for single-user cases, no virtualization
support exists. Here we propose an accelerator virtualiza-
tion mechanism.
The main requirement for isolation/virtualization is a se-

cure low overhead address translation between a VM and a
host compute node. The issues arise in that VMs use ad-
dress virtualization, i.e. they are only aware of guest physi-
cal addressing (GPA) and are unaware of the host physical
addressing (HPA) in the compute node. All buffer and sig-
nal addresses in a VM are expressed in GPA, yet the FPGA
only utilizes HPAs at this point. Hence a GPA-HPA trans-
lation must be introduced to enable accelerators to access
VM memory areas in order to fetch and push required data.
In our mechanism, we examine two methods for translating
addresses and moving data.
The first method copies data between VM memory and

host buffers on the compute node. Accelerators only access
host buffers for which physical addresses are known. This
method, named as VM-copy, is easy to implement while in-
curring data copy cost. Another method is maintaining a
fixed mapping relationship between GHA to HPA by the hy-
pervisor. When a VM triggers an accelerator, it will trap in-
to the hypervisor, and GPA is translated into HPA and then
sent to an accelerator. This method, named VM-nocopy, in-
troduces no data copy overhead. However it requires mod-
ifications to the host OS to reserve large blocks of physical
memory and modifications to the memory allocation method
for VM creation. Both methods are evaluated in this paper.
To implement our virtualization mechanism, a virtual FP-

GA device model is added to each VM. The model transfers
commands, signals and data between the VM and host when
necessary. The HCM in the hypervisor layer is enhanced for
address translation. Besides, the HCM collaborates with F-
PGA device model to achieve accelerator utilization tracking
for cloud management.

3.3 Compatibility in FPGA
In order to allow accelerators developed by different FP-

GA developers to exist in the same FPGA platform in the
cloud, and in order to decouple accelerator developers and
software developers, there should be (i) unified RTL-level
interfaces defined to connect an accelerator to the SL in
the FPGA, and (ii) unified software-hardware interfaces for
software, including both system software and applications,
to talk to accelerators through the SL.
Current systems have two methods to define unified software-

hardware interfaces, CPU push/poll and DMA. Differen-
t kinds of accelerators use different interfaces. For exam-
ple, an accelerator for graph search will likely use push/poll,
while a compression engine will likely take advantage of D-
MA. In this paper we define the unified software-hardware
interfaces based on DMA. APIs are introduced in the library
layer and the VMs.

3.4 Security

Some previous works [11, 6] discussed the security problem
from different points of view. To enable FPGAs in cloud,
there are two fundamental problems to be addressed, pre-
venting users’ accelerators crashing the system and prevent-
ing the accelerators from stealing and polluting in memory
data. The first problem has been discussed in Section 3.1
and 3.3. The second problems can be addressed by a hyper-
visor and an IOMMU. We assume that the hypervisor and
the kernel code in the host machine are trustable, and that
the FPGA platform designed by the cloud provider is also
trustable.

While in a multi-tenant environment, memory accesses
from a CPU are already secure with today’s hypervisor en-
abled architectures, a problem exists in illegal memory ac-
cesses from accelerators, as stipulated under the sharing re-
quirement. As tenants can submit their own FPGA acceler-
ators, it must be guaranteed that those accelerators can only
access memory associated with the virtual machine owning
the accelerator.

IOMMUs, existent in many chip-sets, filter memory ac-
cesses from IO devices and provide protection. Only the
address space registered by the hypervisor is allowed to be
accessed. However, IOMMUs match a memory access by bus
number, device number and function number. If an acceler-
ator is shared by two processes, there is still the potential for
data leakage and cross partition writes. Therefore we choose
DMA as a safer method for data transferring. In our frame-
work, a DMA engine is provided by SL, under control of the
trustable hypervisor. All DMA operations are supervised by
the hypervisor for parameter checking. Only correct DMA
operations are issued. Other undesirable accelerator behav-
iors include excessive DMA commands to the SL, overusing
FPGA internal bandwidth. The SL can apply accelerator
bandwidth control to control these situations.

4. PROTOTYPE IMPLEMENTATION
In this section, a prototype implementation of our frame-

work in Section 3 is introduced and technical details are dis-
cussed. The prototype is based on X86 physical machines
running Linux and KVM-Qemu [1]. An OpenStack is de-
ployed to manage machines with FPGAs as compute nodes.
Although the prototype was conducted using a PCIe FPGA
card, this paper does not assume that the FPGA is hosted
on an IO attached card outside the CPU.

As shown in Figure 1, a compute node in our prototype is
comprised of four logical layers, i.e. hardware, hypervisor,
library and application. At the hardware layer a FPGA sub-
system (PCIe FPGA card) is integrated. The SL provides
common and necessary in-hardware support for high-level
management capabilities. The hypervisor layer runs direct-
ly on the hardware and provides the AP abstraction and
virtualization. A library layer is used to manage FPGA bit-
files and provides APIs for the application layer. Various
applications interact with the FPGA via interfaces. Here
applications mainly include management utilities on com-
pute nodes and tenant’s processes in their VMs.

4.1 Hardware Layer
At the hardware layer, FPGAs are physically connected

to the existing cloud hardware. This layer defines interfaces
to access FPGAs for the three software layers in the frame-
work. Moreover, this layer provides common and necessary

mechanisms enabling high-level management operations.
The prototype utilizes a Xilinx FPGA PCIe card. The

SL is implemented in the FPGA chip and a host driver pro-
vides a transparent wrapper to both the software stack and
hardware logics in FPGAs.

A
B

C D

Service Logic

S
er

vi
ce

 S
ubla

ye
r

P
la

tf
orm

 S
ubla

ye
r

A

B
C

D

User Sublayer : Shared FPGA resource

Service Sublayer : Job Queue, Switch, …

Platform Sublayer : DRAM, PCIe, ICAP, …

FPGA chip

DRAM

Switch

Job Scheduler

Job Queue

Security Controller

DMA Engine

Reconfig

Controller

A B C D

Eth

Registers

High Bandwidth I/O

CPU Memory

……

Context Controller

Figure 2: Design in FPGAs

Figure 2 shows the internal logical structures of the FP-
GA chip in our framework. The FPGA itself can be consid-
ered as a subsystem stack, comprised of three sublayers, i.e.
the platform sublayer (at the bottom), the service sublayer
and the user sublayer (on the top). The platform sublayer
is implemented by on-chip fixed-functional circuits support-
ing accesses to hardware resources attached to the FPGAs,
such as memory and Ethernet controllers. Both the service
sublayer and the user sublayer reside in the programmable
resource area of FPGAs. Partial reconfiguration helps to
partition them from each other, so that a logic configuration
operation happening at the user sublayer will not interrupt
the execution of the service sublayer.
The service sublayer is just the SL in FPGAs, provid-

ing both the interfaces for software layers in our framework
and mechanisms enabling management operations. SL is
the key hardware module in our framework. Details will be
discussed below.
The user sublayer provides the resources for cloud tenants

using our AP abstraction. The programmable area dedicat-
ed to this sublayer is partitioned into a number of standard
accelerator slots, e.g. A, B, C and D in Figure 2. Because of
current FPGA hardware and toolchain limitation, the slot
layout can not be changed unless the whole FPGA chip is
reconfigured.
Among those three, the service sublayer is most impor-

tant. It implements functions to facilitates FPGA subsys-
tem management, and provides all interfaces to address the
compatibility problem in Section 3.3. The service sublayer
defines ABIs for the software to access FPGAs, including
both accelerators and management functions of SL. Also,
the service sublayer defines accelerator interfaces so that an
accelerator in a slot can be connected with the SL.
Figure 2 shows the basic components comprising the SL.

Registers are exposed to the software stack through mem-
ory mapped IO (MMIO). A job queue receives acceleration
jobs from software. A scheduler manages the job queue
and schedules jobs into accelerators according to software-
specified strategies, such as priority and workload size. A

job context is saved by the job scheduler if the scheduler
terminates the job running on a preemptable accelerator. A
shared DMA engine is used to fetch and store data to/from
accelerators. A switch dispatches and gathers data to/from
accelerators for the DMA engine. In order to share the DMA
engine for multiple accelerators, multiple DMA contexts, in-
cluding the buffer’s address, size and etc., are maintained in
the context controller in the switch module. The kernel logic
in a SL instance with two accelerator slot ports are detailed
in Figure 3.

Job

0

Job

1

Job

2

…

Read

Logic

0
1
2

Write

Logic

Context

Store

Queue DMA

Read

Context

DMA

Write

Context

DMA

Read

Context

DMA

Write

Context

Re-order Buffer
DMA Write

Controller

ACC 0

Read Router

Queue Status Port Status

Switch

DMA Engine

Job scheduler

To/From CPU To CPU

ACC 1

Figure 3: Kernel logic in SL

Besides the kernel logic, a security mechanism is provided
in the security controller for each interface between accel-
erators and switch module. It isolates an accelerator when
no job is scheduled on it, detects errors such as time out
error and data format error, and finally reports the error to
software. The reconfiguration controller (Reconfig controller
in Figure 2) receives the command and incremental bitfile
from the HCM, and then reconfigures the FPGA through
the partial configuration interface in the platform sublayer.

4.2 Hypervisor layer
The FPGA framework provides two modules in the hy-

pervisor layer. One is the host driver providing accessabili-
ty to the FPGA subsystem. The other module is the HCM
which manages FPGA resources and provides the bottom-
level software interfaces. This module maintains three data
structures for abstraction and sharing purposes. The FP-
GA info structure records the FPGA chip’s static and run-
time information, such as the chip specification, the layout
and status of in-chip accelerator slots. The ACC info list
records information for each accelerator configured in a slot,
including a unique accelerator identifier (ACC ID) and the
peak bandwidth. The Job info list records information of all
jobs running on each accelerator. By maintaining such data
structures, the HCM provides three basic services enabling
abstraction and sharing:

For abstraction, the HCM tracks FPGA usage and accel-
erator status. It records what type of accelerators have been
downloaded to accelerator slots, maintains unique ACC IDs
for them, and records the in-flight jobs on the FPGA. When
receiving a request for a given type of accelerator, it can find
an in-slot accelerator, choose an idle slot to configure a new
accelerator or even reject the request when illegal.

For sharing, the HCM supports memory management, in-
cluding buffer allocations and address mappings for applica-
tions. Only the HCM knows about the HPA that the DMA

engines need. Buffers needed by applications are allocated
here and mapped to the user space for direct application ac-
cess. It also authorizes FPGA management utilities on the
application layer to access registers in the FPGA.
Moreover, the HCM provides runtime control and moni-

toring for sharing. When a VM starts a job, it will trap into
the HCM using the ioctl call or raise a VM exception, so
that the HCM can take the job request and translates DMA
addresses for proper hardware access. The HCM monitors
the runtime status by accessing performance counters in the
FPGA or its local data structures.
The HCM provides a set of commands via ioctl calls and

shared memory pages for the communication between the
HCM and the upper layers in the framework (Figure 1).
The HCM will only be invoked at the time of management
and job initialization, and as a result it introduces only an
overhead of less than 1 microsecond for the job execution.

4.3 Library Layer
The library layer wraps up services from the HCM, pro-

vides APIs for applications using accelerators, maintains a
bitfile library, and also exposes Linux ioctl commands for F-
PGA management. In our prototype, there are four APIs for
programmers, acc open, acc do job, acc wait and acc close.
The acc open opens an accelerator with a given name, and
allocates buffers for job parameters, source data and result
data, and finally returns a handler containing necessary in-
formation. After the source data is available in the buffer,
the acc do job is called to start a job in the FPGA. The
FPGA framework moves parameters and source data to the
accelerators and the embedded protocol is interpreted by ac-
celerators themselves. The acc wait is used to wait for the
completion of the job, and the returned data will provide
the job result status. The acc close will free all buffers and
delete associated records in the HCM. These APIs free the
software and accelerator developers from having to negotiate
with each other regarding any protocol, which we consider
the basis for a viable FPGA ecosystem.
The bitfile library maintains bitfiles for all supported ac-

celerators. The library includes not only the bitfiles gen-
erated by the FPGA development toolchain, but also de-
scriptions for each bitfile. For example, the description in-
cludes a unique name/identifier for each accelerator, which
slot the accelerator bitfile fits in and the max bandwidth
this accelerator provides. The bitfile library is implemented
by leveraging the image management mechanism in Open-
Stack. For VM images, OpenStack has existing mechanisms
for their storage, query, authorization and movement to the
compute hosts. Only small modifications were needed to
enhance OpenStack to support FPGA bitfiles.
When a VM with an accelerator requirement is created,

the bitfiles are transferred to the selected compute node to-
gether with the image file. An xml file is generated by Open-
Stack for Qemu to launch the VM. A modified Qemu inter-
prets the xml file with FPGA accelerators descriptions and
creates the VM.

4.4 Application Layer
Utilities and the IaaS (Infrastructure as a Service) driv-

er for OpenStack directly run in the application layer. In
the OpenStack control node, Horizon (OpenStack web GUI)
and the Glance (OpenStack storage component) have been
modified to allow administrators the uploading of FPGA

bitfiles and the allocation of accelerator quotas for VMs be-
fore the VMs start running. The Nova scheduler which is an
OpenStack compute component is modified to assign a VM
requiring FPGA accelerator to a compute node with FPGA.

As shown in Figure 1, in an OpenStack compute node
with FPGA, before the VMs start running, a modified Nova
compute component interprets commands from the control
node and uses the low-level commands in the library layer
to talk to the HCM to create an accelerator, monitoring
the status and so on. Utilities have been supported in the
prototype. For example, fpga addacc can be used to add an
accelerator for the VM, fpga bwctl can be used to set the
bandwidth allocation for an application, fpga priority can
be used to set the scheduling priority of an application.

For a VM, a GCM (shown in Figure 1) handles require-
ments and provides a shared and managable FPGA view
inside the VM by cooperating with the HCM and a virtual
FPGA model(VFM). The GCM provides the same APIs for
the guest software stack as what HCM provides to the host
software stack. But the implementation of GCM is different
from the HCM. Instead of talking to the real FPGA hard-
ware, the GCM accesses the VFM, which is an I/O device
simulator added to Qemu. The VFM traps I/O accesses
from a VM and maintains the connection between a VM
and the host, such as a map between the accelerator ID in
the VM and the accelerator ID in the host.

Next we will discuss how an application utilizes an accel-
erator. For simplicity, we at first describe how an applica-
tion in a host accesses an accelerator. Then we expand the
discussion to the case running in a VM.

Each accelerator job is represented by two buffers and one
descriptor. One buffer keeps the source data to be processed
by the accelerator, and the other buffer will be filled by the
accelerator with the result data. The descriptor is a struc-
ture of 64-byte length, and the members of the structure
include the job priority, the ACC ID, the addresses and size
of both input data and result buffers, parameters for this
job, the address of this descriptor, and the job status.

For a job to be invoked, all members except the data size,
parameters and status, are filled by the HCM and protected
by a checksum in the HCM, so that applications can not
modify members after job submission. An application fills
the data size and parameters before sending the job to the
FPGA. The status is initialized by the application and re-
filled by the FPGA. The status provides information about
whether the job has completed normally, whether the result
buffer is big enough, what the result size in the result buffer
is, and so on.

Figure 4 shows the main software execution flow in the
application and HCM. The application talks to the HCM
through Linux ioctl commands in the library layer. The
buffers and descriptors are allocated by the HCM running
in kernel mode and then mapped to user space, so that both
HCM and application can access the buffers and descriptor.
A Key is used in the HCM to index the buffers and checksum
mentioned above. It is also returned to the application to
be used as identification of the job.

The execution flow is almost the same for an application
in a VM as it is in a host, except that the GCM talks with
both the VFM and the HCM to complete a job.

The GCM asks for the HCM to get information and per-
mission to access accelerators in a physical FPGA. As men-
tioned in Section 3.2, there are two methods to move data

Start

Open ACC ACC available ?

Map PID to ACC ID

Require buffers
Malloc buffers

Return a Key

Change priority

Key is legal ?

Bandwidth quota

has been used out ?

Wait for completion

Use the result

End of application ?

Free resource

Generate source data

Start a job with the Key

Succeed ?

Send the physical

address of descriptor as

a door bell to FPGA

End

Application Control module

No

No

Succeed ?
No

Yes

Yes

Yes

Yes

Bandwidth

is used out

Key is

not legal

No

Yes

Figure 4: Software execution flow

between a VM and a physical FPGA. If VM-copy is used,
the VFM will work as an agent copying data between the
VM and buffers in the host. For VM-nocopy, the HCM
translates GPAs in a VM to HPAs so that the DMA engine
can directly access buffers and descriptor in VM memory.

5. EVALUATION

5.1 Evaluation Setup
The evaluation is conducted on an IBM X3650M server

with one Intel Xeon X5690 processor. The processor pro-
vides 6 cores, 12 hyper threads, and works at a frequency
of 3.47GHz. 16GB DDR3 memory is installed in the server
and memory operates at 1067MHz. The OS on the server
is a Fedora Core 12 with Linux kernel 2.6.31.5. The Qemu
used for the VM is a modified qemu-kvm-1.0.
A PCIe card with one Xilinx Kintex-7 XC7K325T FP-

GA is used as our FPGA subsystem, and the PCIe interface
is configured as Gen2, 8 lanes, providing a bandwidth of 5
GB/s, including 8b/10b coding overhead and PCIe trans-
action overhead. Our system operates at 100MHz. In an
instance with an 8-slot job queue and a 3-port switch, the
resource usage of our SL is 3,289 Slices and 1,260Kb BRAM,
which are only 6.46% and 3.62% of our FPGA chip. Adding
one more switch port will use another 290 Slices and 8Kb
BRAM.
The proposed FPGA platform treats different types of ac-

celerators as FPGA components requiring different FPGA
reconfigurable resources, different I/O bandwidth and differ-
ent workload patterns. The FPGA platform is not concerned
with what accelerators are accessed through the DMA en-
gine. We utilize four accelerators which cover the character-
istics to evaluate the proposed FPGA platform. Accelerators
for AES, SHA-256, Stereo Matching (Stereo), and Matrix-
Vector Multiply (MVM) are selected and their characteris-
tics are listed in Table 1. AES is from the encryption domain
and MVM is from the science compute domain. Both are
data-intensive, using as much bandwidth as PCIe or the D-
MA engine can provide. Stereo is a representative case for
computation-intensive tests from the computer vision do-
main, requiring many reconfigurable resources but little I/O
bandwidth. SHA is a widely used hashing mechanism. Its

Table 1: Accelerator Characteristics

Acc.
BW Logic Memory Bitfile

(GB/s) (K Slices) (Mb) (MB)
AES 1.60 3.22 0.13 4.64
SHA 0.09 0.59 0.07 4.64
Stereo 0.20 18.01 2.67 4.64
MVM 1.60 1.31 0.14 4.64
FPGA 1.28 50.95 34.80 11.18

FPGA implementation is not pipe-lined, thus requiring lim-
ited yet bursty bandwidth to fill its buffer. Among these
four, only the AES accelerator supports preemption, per-
mitting a job to be interrupted. All accelerators share one
DMA engine, of which the peak bandwidth is 1.28GB/s and
bandwidth is the only runtime resource shared by multiple
accelerators after the FPGA configured.

A micro benchmark using these accelerators is construct-
ed. The benchmark generates random data and issues jobs
to accelerators following the execution flow shown in Fig-
ure 4. The benchmark can send jobs to accelerators with
different payload size, priority and random patterns. To as-
sess the FPGA performance in both physical and virtual
environments, the micro benchmark is run in three different
environments. The first one is in the host OS. The second
one is the VM using VM-copy. The third one is the VM
using VM-nocopy. Performance comparison between FPGA
accelerators and software implementations is not conducted
since that is not the focus of this paper.

Three attributes are used to evaluate the prototype. The
first one is bandwidth, which shows how much source data
can be computed by an accelerator per second. The second
one is latency, which shows how much time will be used to
finish a job. The starting point of the measurement is after
the source data has been ready in the source buffer, and
the end point of the measurement is when the application is
notified by the FPGA that the result buffer has been filled
with data. The time measurement is done through reading
the user-level accessible clock cycle counter inside the CPU
core with overhead in the 15 nsec range. The third one is
the coefficient of variance (CV) for the job latency in a one
second window. CV is the standard deviation of latency
divided by the average latency, which describes the jitter
while executing many jobs.

5.2 Payloads Evaluation
The AES accelerator is used to provide basic performance

numbers, because it uses maximum bandwidth and exhibits
the lowest latency for a job. The micro benchmark send-
s jobs with different payload sizes to the AES accelerator.
The performance results are shown in Figure 5. When the
payload is small, neither of the test cases can fully utilize the
accelerator due to the software overhead being the dominant
component. Software overhead in VM-nocopy is larger than
that in the host although no memory copy is needed. With
4KB payload, a host application spends 11 us for a round
trip including 1.2 us for entering the host control module.
A job issued in VM-nocopy forces multiple context switch-
es (application in VM → KVM in host (potentially several
times) → guest control module → KVM in host → Qemu in
host → host control module). Therefore, about 4 us over-
head (from application running in a VM to Qemu) is added
as compared to the host application. At payloads larger than

256KB, performance of VMnocopy is virtually the same as
the host. For VM-copy, the benchmark will never reach the
peak performance as memory copy overhead also increases
with payload increase.
Jitter is typically high in VM environments when the pay-

load is less than 64KB because the request latency is not
high enough to ignore the interference from OS scheduling
for VMs. The 4KB payload case in VM-nocopy has higher
jitter than the case in VM-copy. This is because the job-
s in VM-nocopy have low latency hence they are sensitive
to interference. The 8KB payload case of VM-copy has the
highest jitter. This is due to time spent in the Qemu mem-
ory copy function.
The performance numbers suggest that a system with F-

PGA accelerators might consider a hybrid approach where
requests with small latencies are performed by software.

0

400

800

1200

1600

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Size (4KB)

B
a

n
d

w
id

th
 (

M
B

/s
)

Host VM-copy VM-nocopy

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Size (4KB)

L
a

te
n

c
y
 (

m
s
)

Host VM-copy VM-nocopy

0%

10%

20%

30%

40%

50%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Size (4KB)

C
V

Host VM-copy VM-nocopy

Figure 5: Test with different payload

5.3 Accelerator Sharing
In order to test intra-node scalability and accelerator shar-

ing efficiency, as much as eight processes sharing one and
multiple AES accelerators is tested, and the total band-
width and average latency for those processes are shown in
Figure 6. Four scenarios are compared. The first scenario is
that all processes run on the host directly and share one AES
accelerator (“host”). The second scenario is that all process-
es run in one VM-nocopy VM and share one AES accelerator
(“One VM”). The third scenario is that each process runs in
one VM-nocopy VM and multiple such VMs share one accel-
erator (“VMs”). The final scenario is that each process runs
in one VM-nocopy VM and each such VM uses one indepen-
dent AES accelerator (“AESs”). Each process has a payload
of 256KB and the bandwidth and latency results in Figure 6

show that in all environments, the intra-node scalability is
good as the overall bandwidth reaches the peak bandwidth
that PCIe can provide. Job latency jitter tends to increase
when one accelerator is shared by an increasing number of
processes. When eight processes use AES with the payload
of 256KB in each job, the CV is about 30%.

���

����

����

����

����

� � � � � � � �

Number of Processes

T
o
ta

l
B

a
n
d
w

id
th

(M
B

/s
)

Host One VM VMs AESs

�

� �

�

� �

�

� �

� � � � � � � �

Number of Processes

L
a

te
n

c
y
 (

m
s
)

Host One VM VMs AESs

Figure 6: Processes share an accelerator

5.4 Accelerator Management
Bandwidth and priority control are used to show the re-

source management in our prototype. Figure 7 demonstrates
that the bandwidth of two processes using an accelerator can
be managed. The micro benchmark using the MVM acceler-
ator runs twice in VM-nocopy. The two processes use MVM
with best effort and the source data size is 256KB. The band-
width for each of the two processes has been tested, and the
total bandwidth is also shown in Figure 7. Between second
1 to second 19 , no bandwidth control exists for the VMs, so
that each of the processes has a performance of about 608 M-
B/s, and they are fully using the MVM physical bandwidth.
At 19 seconds the fpga-bwctl utility metioned in Section 4.4
is used in the host machine to control the bandwidth quota
for VMs to 500 MB/s. The two processes in the VM still use
AES fairly between second 19 to second 33. At second 33
and second 48, fpga-bwctl is used to control the bandwidth
quota for process 0 to 100 MB/s and 200 MB/s respectively.
This experiment demonstrates that bandwidth is a manage-
able resource.

�

���

���

����

����

� � � �� �� �� �� �� �� �� �� �� �� �� �� ��

Time

B
a
n
d
w

id
th

 (
B

M
/s

)

Process 0 Process 1 Total

Reduce VM

bandwidth

Increase P0

bandwidth

Reduce P0

bandwidth

Figure 7: Bandwidth control in prototype

Figure 8 shows that the priority of two processes using

an accelerator can be managed. The micro benchmark run-
s twice in VM-nocopy and sends jobs to one instance of a
preemptable AES accelerator. The process 0 sends 100 jobs
to AES randomly in a second, and the data size in a job is
256KB. Process 1 uses AES with best effort, and the source
data size is 4MB. Process 1 runs 16 seconds after process 0.
Before process 1 starts, the bandwidth of process 0 is about
25 MB/s because it limits its jobs to 100 times a second. The
latency and jitter are low in the period as it uses AES ex-
clusively. CV at 9 seconds and 13 seconds are high because
applications in the VMs run in the software layer so they
are easy to be disturbed. At 16 seconds, process 1 which
issues jobs with large payload joins. Process 0 is heavily
disturbed because it issues jobs that are much smaller than
process 1. The latency of process 0 increases because pro-
cess 0 and process 1 run with the same priority and the jobs
from process 0 have to wait for the completion of the jobs
from process 1. At 38 seconds, the fpga-priority command
is used to raise the priority of process 0. With higher pri-
ority, jobs from process 0 can force a context switch in the
FPGA so that they can be finished as soon as possible. The
results in Figure 8 show that context switching is efficient
for the FPGA subsystem in this scenario and priority is also
a manageable resource in the FPGA framework.

0%

20%

40%

60%

80%

1 11 21 31 41 51 61
Time (second)

C
V

0

1

2

3

4

1 11 21 31 41 51 61
Time (second)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

1

10

100

1000

10000

1 11 21 31 41 51 61
Time (second)

B
a
n
d
w

id
th

 (
M

B
/s

)

Process 0 Process 1

Process 1 begin Priority control

1194 MB/s

25 MB/s

0.21ms 0.22ms

2.3ms

Figure 8: Priority control in prototype

5.5 Accelerator Scheduling
In this section, we show the possibility of increasing overall

throughput by scheduling accelerators to efficiently share
resources.
Sequential execution is always a baseline for scheduling.

Moreover, it is worth noting that data-intensive accelerators
might occupy the entire PCIe bandwidth (BW). In such a
case, configuring another data-intensive accelerator into an-
other slot does not improve throughput because of the B-

W bottleneck. In contrast, adding a computation-intensive
one might improve overall throughput by doing computation
while BW is not available.

Let’s suppose four accelerator jobs exist, each for one ac-
celerator type in Table 1 respectively. The payload size of
each job is shown in Figure 9.

Three scenarios are used to show the effectiveness of schedul-
ing: (1) Only one accelerator is configured into FPGA at a
time and all jobs processed sequentially; (2) Two slots host
two accelerators concurrently, while accelerators are sched-
uled ignoring their data-intensive or computation-intensive
nature; (3) Two slots host two accelerators concurrently, and
accelerators are scheduled considering their various require-
ments for computation and I/O resources.

Figure 9 shows the time consuming for each job in three
scenarios. The time consuming for each job varies because
of the BW conflict. According to the figure, the result in
scenario 3 improves 39% and 16% of throughput than that
in scenario 1 and 2, respectively, by mixing computation-
intensive and data-intensive accelerators. Considering mul-
tiple heterogeneous nodes in a cloud, how to schedule d-
ifferent types of accelerators to improve efficiency will be
challenging and this will be our future work.

AES Stereo MVM SHA

3.65s 4.35s 5.98s0 Time

(1)

(2)

(3)

1GB 500MB 1GB 200MB

Figure 9: Accelerator scheduling

The evaluations in this section show our basic concept on
FPGA in cloud, and also demonstrate the feasibility of the
proposed framework, especially for the I/O programming
model which is the defacto model in practice today.

6. CONCLUSION
In this paper we analyze the impediments to bringing F-

PGAs as a shareable resource to the cloud. We further in-
troduce where FPGA manufacturers can provide architec-
tural support to overcome these impediments. We provide
a framework and a prototype that provides an FPGA cloud
solution in the confines of today’s FPGA technology. We
propose an AP abstraction for abstracting FPGA resources
in the cloud, and introduce an SL as a key hardware mod-
ule to enable FPGA management in the cloud system stack.
Given the prototype, we also demonstrate how abstraction,
sharing, compatibility and security can be achieved while
using FPGAs in the cloud. Our future work will focus on
resource scheduling for large scale heterogeneous cloud com-
puting.

7. ACKNOWLEDGMENTS
The work is supported by IBM, National Natural Science

Foundation of China (No.61373026), and Tsinghua Univer-
sity Initiative Scientific Research Program.

8. REFERENCES

[1] Kernel Based Virtual Machine . Website.
http://www.linux-kvm.org/page/Main Page.

[2] Openstack - Open source software for building private
and public clouds. Website.
http://www.openstack.org/.

[3] Hybrid-Core: The ”Big Data” Architecture. Website,
March 2013.
http://www.conveycomputer.com/files/7013/5075/9401
/Hybridcore-The-Big-Data-Computing-
Architecture.pdf.

[4] IBM PureData System for Analytics Powered by
Netezza technology. Website, 2013.
http://public.dhe.ibm.com/common/ssi/ecm/en/imd
14400usen/IMD14400USEN.PDF.

[5] Technical publication. Website, March 2013.
http://solacesystems.com/library/3200-series.php.

[6] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. A secure
coprocessor for database applications. In Field
Programmable Logic and Applications (FPL), 2013
23rd International Conference on, pages 1–8, Sept
2013.

[7] J. Auerbach, D. Bacon, P. Cheng, R. Rabbah, and
S. Shukla. Virtualization of heterogeneous machines.
In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 890–894, 2011.

[8] Auerbach, Joshua and Bacon, David F. and Cheng,
Perry and Rabbah, Rodric. Lime: a java-compatible
and synthesizable language for heterogeneous
architectures. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’10, pages
89–108, New York, NY, USA, 2010. ACM.

[9] R. Brodersen, A. Tkachenko, and H. Kwok-Hay So. A
unified hardware/software runtime environment for
fpga-based reconfigurable computers using borph. In
Hardware/Software Codesign and System Synthesis,
2006. CODES+ISSS ’06. Proceedings of the 4th
International Conference, pages 259–264, 2006.

[10] L. Chen, T. Marconi, and T. Mitra. Online scheduling
for multi-core shared reconfigurable fabric. In Design,
Automation Test in Europe Conference Exhibition
(DATE), 2012, pages 582–585, 2012.

[11] K. Eguro and R. Venkatesan. Fpgas for trusted cloud
computing. In Field Programmable Logic and
Applications (FPL), 2012 22nd International
Conference on, pages 63–70, Aug 2012.

[12] B. S. Frank Opitz, Edris Sahak. Accelerating
distributed computing with fpgas. Xcell Journal,
3:20–27, 2012.

[13] P. Garcia and K. Compton. Kernel sharing on
reconfigurable multiprocessor systems. In ICECE
Technology, 2008. FPT 2008. International
Conference on, pages 225–232, 2008.

[14] P. Garcia, K. Rupnow, and K. Compton. A
reconfigurable computing scheduler optimized for
multicore systems. In Field Programmable Logic and
Applications (FPL), 2010 International Conference
on, pages 107–112, 2010.

[15] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and
P. Ranganathan. Pegasus: coordinated scheduling for
virtualized accelerator-based systems. In Proceedings

of the 2011 USENIX conference on USENIX annual
technical conference, USENIXATC’11, pages 3–3,
Berkeley, CA, USA, 2011. USENIX Association.

[16] C.-H. Huang and P.-A. Hsiung. Hardware resource
virtualization for dynamically partially reconfigurable
systems. Embedded Systems Letters, IEEE, 1(1):19–23,
2009.

[17] A. Ismail and L. Shannon. Fuse: Front-end user
framework for o/s abstraction of hardware
accelerators. In Field-Programmable Custom
Computing Machines (FCCM), 2011 IEEE 19th
Annual International Symposium on, pages 170–177,
2011.

[18] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt.
Gdev: first-class gpu resource management in the
operating system. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX
ATC’12, pages 37–37, Berkeley, CA, USA, 2012.
USENIX Association.

[19] Khronos Group Inc. OpenCL project. Website.
http://www.khronos.org/opencl/.

[20] R. Kirchgessner, G. Stitt, A. George, and H. Lam.
Virtualrc: a virtual fpga platform for applications and
tools portability. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate
Arrays, FPGA ’12, pages 205–208, New York, NY,
USA, 2012. ACM.

[21] Nvidia Inc. GRID GPUs . Website.
http://www.nvidia.com/object/grid-boards.html.

[22] Oskar Mencer and Stephen Weston. Computational
acceleration of credit and interest rate derivatives.
Technical report, March 2013.
http://www.maxeler.com/media/documents/Maxeler
SummaryAccelerationCreditInterestDerivatives.pdf.

[23] C. Plessl and M. Platzner. Virtualization of
hardware-introduction and survey. In ERSA, pages
63–69, 2004.

[24] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. Ptask: operating system abstractions to
manage gpus as compute devices. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 233–248, New York, NY,
USA, 2011. ACM.

[25] K. Rupnow, W. Fu, and K. Compton. Block, drop or
roll(back): Alternative preemption methods for rh
multi-tasking. In Field Programmable Custom
Computing Machines, 2009. FCCM ’09. 17th IEEE
Symposium on, pages 63–70, 2009.

[26] W. Wang, M. Bolic, and J. Parri. pvfpga: Accessing
an fpga-based hardware accelerator in a
paravirtualized environment. In Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2013
International Conference on, pages 1–9, Sept 2013.

[27] Y. Wang, J. Yan, X. Zhou, L. Wang, W. Luk,
C. Peng, and J. Tong. A partially reconfigurable
architecture supporting hardware threads. In
Field-Programmable Technology (FPT), 2012
International Conference on, pages 269–276, 2012.

[28] M. A. Watkins and D. H. Albonesi. Remap: A
reconfigurable architecture for chip multiprocessors.
IEEE Micro, 31(1):65–77, 2011.

