
Making Human Connectome Faster:
GPU Acceleration of Brain Network Analysis

Di Wu∗, Tianji Wu∗, Yi Shan∗, Yu Wang∗, Yong He†, Ningyi Xu‡ and Huazhong Yang∗
∗Department of Electronic Engineering,

Tsinghua National Laboratory for Information Science and Technology, Tsinghua University

Email: {wud07,wutj06,shany08}@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn
† State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University

‡Hardware Computing Group, Microsoft Research Asia

Abstract—The research on complex Brain Networks plays
a vital role in understanding the connectivity patterns of the
human brain and disease-related alterations. Recent studies have
suggested a noninvasive way to model and analyze human brain
networks by using multi-modal imaging and graph theoretical
approaches. Both the construction and analysis of the Brain Net-
works require tremendous computation. As a result, most current
studies of the Brain Networks are focused on a coarse scale based
on Brain Regions. Networks on this scale usually consist around
100 nodes. The more accurate and meticulous voxel-base Brain
Networks, on the other hand, may consist 20K to 100K nodes. In
response to the difficulties of analyzing large-scale networks, we
propose an acceleration framework for voxel-base Brain Network
Analysis based on Graphics Processing Unit (GPU). Our GPU
implementations of Brain Network construction and modularity
achieve 24x and 80x speedup respectively, compared with single-
core CPU. Our work makes the processing time affordable to
analyze multiple large-scale Brain Networks.

Keywords-GPU; hardware computing; Human Connectome;
Voxel based Brain Network

I. INTRODUCTION

Recently, the descriptions of structural and functional con-

nectivity of the human brain (i.e., human connectome) have

attracted considerable attention[1]. These studies are important

for understanding the structure and function of the human

brain in health and diseases.

The human brain is structurally and functionally orga-

nized into complex networks allowing the segregation and

integration of information processing. Recent studies have

suggested that a combination of multi-modal brain magnetic

resonance imaging (MRI) techniques (e.g., structural MRI,

functional MRI and diffusion MRI) together with graph theory

approaches can help us to noninvasively map structural and

functional connectivity patterns of the human brain. These

approaches are particularly crucial in both neuroscience and

clinics since (i) they provide insights into the understanding

of the organizational principles of large-scale Brain Networks

that underlie high-level cognition, and (ii) they could of-

fer novel routes to elucidate the biological mechanisms of

brain diseases and further help us to uncover network-based

biomarkers for the diagnosis and monitoring of diseases[2],

[3], [1].

This work is supported by Microsoft Research Asia and AMD China Uni-
versity Program. This work is also partially supported by National Natural Sci-
ence Foundation of China (No.60870001), 863 project (No. 2009AA01Z130).

For instance, a recent functional MRI study demonstrates

that the topological parameters of brain functional networks

can discriminate early Alzheimer’s disease patients from

healthy elders with a high sensitivity of 72% and specificity

of 78% [4]. Although the network-based research strategy is

impressive, the detailed connectivity patterns in Alzheimer’s

disease still remain unclear since the whole brain is repre-

sented by only 90 nodes (regions) in the previous study. A

comprehensive, detailed analysis by including thousands of

network nodes derived from neuroimaging voxels is important

and necessary in the Brain Network research.

From the existing, non-invasive imaging techniques, the

brain can be represented by 20k to 100k voxels. A fine-scale

voxel based Brain Network can be constructed by measuring

the structural or functional relationship between all pairs of

image voxels. However, both the construction and analysis of

voxel level Brain Networks require tremendous computation

power. A coarse-scale region based network is built by first

average the acquired data within each brain region, then

regard each region as a network node. There is a big loss

of information in the building of region based networks.

Nowadays, much work has been done to construct and

analyze the Brain Networks, but most of them was focused

on the coarse-scale region level networks. For instance, several

studies have utilized a prior brain atlas to parcellate the brain

into tens of brain regions and then constructed region-based

Brain Networks[5], [6]. Other studies have used image voxels

to build a partial Brain Network at a fine scale[7]. Recently,

there is some work on voxel based Brain Network analysis[8].

However, some approximate algorithms (such as random walk

method) were used to avoid complex eigenvectors computation

of the correlation matrix.

According to the above, the Brain Network research is

a potential customer of high performance/low power hard-

ware computing. Figure 1 illustrates the importance of high-

performance/low-power hardware computing in the Brain Net-

work research.

The computation strategy can be divided into two categories.

In the first one, small-scale computing nodes such as personal

computers are used in hospitals, since they are convenient and

cheap for maintenance. These computers can be configured

with dedicated acceleration hardware (such as GPUs and

FPGAs) to fit the specific problem domain. In the second

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPADS.2010.105

593

�������	
���
�
����
���
����������������	����

�������������������
���

�� �	��	�!�

"	��	�����

#�����"���������
�$�������
"��	��	�%

&����
���������
	��

'��$�(���	�)�'��$����	�

(��	�*�
+	�
*�
&��	*�
	
�,

-./01../����	��
$�����23�
��$����
��4������	
���

5�4�������(���	

"��������	��$���
+	
	���	�	���

���
	��

Fig. 1. To analyze and model Brain Networks for early diagnosis of brain
diseases, we need to sample as many people as possible, with the resolution
as high as possible. However, when the number of people and the number of
Brain Network nodes increase, traditional computing systems will take either
unaffordable time (perhaps years) or unaffordable electricity power (perhaps
mega-watts). With efficient hardware computing systems, both the speed and
the power will be reasonable (perhaps days/ hundreds of watts).

category, large-scale high-performance computers are used in

research institutes. Those computers with dedicated hardware

are grouped into clusters to form a heterogeneous hardware

computing platform. Its high efficiency and computation speed

are especially crucial for the analysis of the Brain Networks

with huge sizes and a very large sample capacity.

Among the hardware computing platforms, general purpose

GPU emerges as a very powerful and low-cost parallel com-

puting platform. GPGPU has been used in many applications,

such as linear algebra, graphic or network based algorithms.

In [9], a framework for linear algebra operators on GPU is

proposed. In [10], several fundamental graph algorithms are

implemented on GPU, such as breadth first search, single

source shortest path, and all-pairs shortest path. In [11], a

method is proposed for obtaining the all-pairs shortest path

for large graphs on GPUs. However, few of them are designed

for the Brain Network Analysis.

In this paper, we, for the first time, propose a GPU based

brain network analysis framework to accelerate the analysis

of large scale Brain Networks. Under this framework, we

accelerate the construction and modularity of Brain Networks

by 24x and 80x using AMD GPU platform. Our voxel based

Brain Networks consist of 38368 nodes.

The rest of this paper is organized as follows. Section II

introduces our GPU based Brain Network analysis platform

and the key algorithms, including construction and modularity

operations. Section III proposes the GPU implementation of

these two algorithms. Experimental results are shown and

analyzed in Section IV. Section V concludes the paper and

puts forward the future work.

II. FRAMEWORK AND ALGORITHMS

In this section, we introduce our GPU framework for Brain

Network construction and analysis, and the algorithms used in

this work.

The original data is acquired from functional MRI, which

provides the blood oxygen level dependent (BOLD) signal of

each voxel at a certain spatial resolution. By sampling the

Fig. 2. Brain Network Analysis Framework

signal at a certain frequency for a period of time, we get a time

series of BOLD signal for each voxel. Hence, the data acquired

from fMRI is represented by a 4-dimension matrix: the x-, y-

and z-axis denote to the spatial position of voxels in the human

brain and the t-axis represents the BOLD sequence of a voxel.

In our experiments, the grey matter contains 𝑁𝑣 = 38368
voxels, and the BOLD signal of each voxel is 𝐿 = 230 points

in length.

A voxel-based Brain Network can be built from the BOLD

sequences of all voxels. It is a network that illustrates the

connections between these voxels. Each node in the network

represents a voxel, and each connection represents the corre-

lation between the BOLD signals of the pair of voxels. After

the Brain Network is built, graph algorithms can be applied

to analyze the network, such as network hub detection, mod-

ularity detection, small-world analysis, etc. Our framework is

illustrated in Figure 2.

In this work, we focus on the construction of Brain Net-

works and one aspect of the network analysis, i.e. modularity

detection of the network.

A. Brain Networks Construction

Here we introduce the detailed algorithm of brain-network

construction. This algorithm is used in [5], [8].

By fMRI, a series of signal of length 𝐿 is acquired for each

of the 𝑁𝑣 voxels. For each pair of nodes (voxels) (𝑣𝑖, 𝑣𝑗), we

obtain the Pearson’s correlation [12] between the series of the

pair, i.e.

𝑟𝑖,𝑗 =

∑
(𝑣𝑖 − 𝑣𝑖) (𝑣𝑗 − 𝑣𝑗)√∑

(𝑣𝑖 − 𝑣𝑖)
2 ∑

(𝑣𝑗 − 𝑣𝑗)
2

(1)

=

∑
𝑣𝑖𝑣𝑗 − 1

𝑛 (
∑

𝑣𝑖) (
∑

𝑣𝑗)√(∑
𝑣2𝑖 − 1

𝑛 (
∑

𝑣𝑖)
2
)(∑

𝑣2𝑗 − 1
𝑛 (

∑
𝑣𝑗)

2
) (2)

where 𝑣𝑖 denotes to the series of voxel i, 𝑣𝑖 is the average

of the series of that voxel, and all
∑

denotes to
∑𝐿−1

𝑡=0 , i.e.

summing along the whole time series.

From equation 2, we can see that only the term
∑𝐿−1

𝑡=0 𝑣𝑖𝑣𝑗
needs to be calculated for each pair of voxels, while the first

594

moment
∑

𝑣𝑖 and second moment
∑

𝑣2𝑖 can be calculated on

a per-voxel basis.
The absolute magnitude of correlation, i.e. 𝑟𝑖,𝑗 = ∣ ˆ𝑟𝑖,𝑗 ∣ of a

pair of voxels represents the strength of connection of the pair.

After calculating the magnitude of correlation of all pairs, we

get a symmetric correlation matrix. The matrix represents a

complete graph of all voxels with weighted edges. From the

matrix, we can quickly obtain the weight of each voxel by

summing up the weight of all edges connected with the voxel,

i.e.

𝑤𝑖 =
∑
𝑗 ∕=𝑖

𝑟𝑖,𝑗 (3)

Voxels with higher weight tend to be located in the hub regions

of the brain.
In this work, we focus on un-weighted Brain Networks,

which can be built from the correlation matrices by applying

a threshold on the weight of edges. Edges that are weighted

higher than the threshold remain to be connections in the

un-weighted network, while other edges are discarded. The

threshold should be chosen to ensure the un-weighted network

is connected and has a certain sparsity 𝑆. 𝑆 is defined to be

the ratio of existing edges in a network to the number of total

possible edges. The un-weighted network can be represented

by a sparse matrix, in which all non-zero numbers are ones,

or by an adjacency list.
Un-weighted networks are less memory-consuming com-

pared to weighted networks. In our experiment, the full

correlation matrix has the size of 38368×38368, and consumes

about 2.7GB of memory when elements are in 32-bit float type

and only half of the matrix is stored due to its symmetry. It

takes much less space to store a sparse matrix depending on

the sparsity.
Although the threshold can be applied on the fly when

calculating the correlation matrix, the amount of calculation

for obtaining a full correlation matrix can not be released.

There are 𝑁𝑝𝑎𝑖𝑟 = 𝑁𝑣(𝑁𝑣 − 1)/2 pairs. By calculating the

order 1 and 2 moments of all voxels in advance, obtaining

the correlation of each pair requires roughly 2𝐿 floating-

point operations (FLOP). Hence, the construction of a Brain

Network has 𝑂(𝑁2
𝑣𝐿) complexity.

B. Brain Networks Modularity

After constructing the voxel-base Brain Network, we exam-

ine the methods to analyze the modular organization of it using

graphic modularity algorithms. There are several methods that

are applicable to un-weighted sparse adjacent networks. A

random-walk-based method is introduced in [13], and is used

in [8]. A greedy algorithm is presented in [14], and is used in

[5].
The algorithm we choose for Brain Network community

structure detection is the eigenvector-based spectral partition

method[15]. The idea of modularity is to find groups of points

that has a lot of inner-group connections and few inter-group

connections. A benefit function 𝑄 is introduced to judge the

network’s modularity, which is defined as follow:

𝑄 =
1

2𝑚

∑
𝑖,𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗] 𝛿 (𝑔𝑖, 𝑔𝑗) (4)

where 𝐴𝑖𝑗 is the binary adjacent matrix representing the Brain

Network; 𝑃𝑖𝑗 is the probability for an edge to fall between

every pair of vertices 𝑖, 𝑗; 𝑔𝑖 is defined as the community to

which vertex 𝑖 belongs; 𝛿 (𝑔𝑖, 𝑔𝑗) is 1 if 𝑔𝑖 = 𝑔𝑗 and 0 if

otherwise, and 𝑚 is the number of edges in the network. 𝑃𝑖𝑗

can be defined as 𝑃𝑖𝑗 =
𝑘𝑖𝑘𝑗

2𝑚 ,where 𝑘𝑖 is the degree of node 𝑖.
When dividing the network into only two groups, we let 𝑠𝑖 be

the indicator of the division: 𝑠𝑖 = 1 if the node 𝑖 belongs to

one group and -1 if it belongs to another. Then the modularity

can be denoted as:

𝑄 =
1

4𝑚

∑
𝑖𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗](𝑠𝑖𝑠𝑗 + 1) (5)

=
1

4𝑚

∑
𝑖𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗]𝑠𝑖𝑠𝑗 (6)

The latter derivation is based on the fact that
∑

𝑖𝑗 𝐴𝑖𝑗 =∑
𝑖𝑗 𝑃𝑖𝑗 . Then Q can be rewritten to a matrix form by defining

B:

𝐵𝑖𝑗 = 𝐴𝑖𝑗 − 𝑃𝑖𝑗 (7)

a real symmetric matrix, called Modularity Matrix.

Then the problem becomes finding the best division s that

maximize 𝑄. In [15], it can be proven that the best s can be

obtained by the eigenvector u of B with the most positive

eigenvalue, i.e.

𝑠𝑖 =

{
1, if 𝑢𝑖 ≥ 0,

−1, if 𝑢𝑖 < 0
(8)

Hence, using the eigenvector corresponding to the most pos-

itive eigenvalue of B, we can divide the network into two

groups according to the signs of the elements of this eigen-

vector.

The Brain Networks are unlikely to have only two commu-

nities. A modified algorithm to handle multiple division is also

described in [15]. Firstly, the benefit function 𝑄 is modified to

Δ𝑄, which is the increment of 𝑄 before and after subdivision

of the community, thus:

Δ𝑄 =
∑
𝑖,𝑗∈𝐺

𝑐∑
𝑘=1

𝐵𝑖𝑗𝑠𝑖𝑘𝑠𝑗𝑘 −
∑
𝑖,𝑗∈𝐺

𝐵𝑖𝑗 (9)

=
𝑐∑

𝑘=1

∑
𝑖,𝑗∈𝐺

[
𝐵𝑖𝑗 − 𝛿𝑖𝑗

∑
𝑙∈𝐺

𝐵𝑖𝑙

]
𝑠𝑖𝑘𝑠𝑗𝑘 (10)

= Tr[s𝑇B(𝐺)s] (11)

where B(𝐺) has the elements:

𝐵
(𝐺)
𝑖𝑗 = 𝐵𝑖𝑗 − 𝛿𝑖𝑗

∑
𝑙∈𝐺

𝐵𝑖𝑙 (12)

Similarly, the division can be found according to the signs

of the elements of the eigenvector u corresponding to the most

positive eigenvalue 𝛽 of B(𝐺). The division maximizes Δ𝑄,

thus maximizes the contribution to the increase of 𝑄 of the

whole network. The algorithm stops when there is no positive

eigenvalue, which means there is no division that can increase

the modularity of the network.

595

III. GPU IMPLEMENTATIONS

In this section, the architecture of AMD GPU platform

is introduced first, followed by the description about the

GPU accelerated implementations of the construction and

modularity analysis of Brain Networks.

A. AMD GPUs

We choose the general purpose GPU platform from AMD,

named ATI Stream. In this section, we briefly discuss the

hardware functionality and programming model of AMD

RV870 GPUs, which belong to the latest family of AMD

GPUs. Please refer to [16] for detailed information.

1) Computation Units and Programming model: In RV870,

stream cores or ALUs are organized as 5-way VLIW proces-

sors, called thread processors. Each thread processor contains

4 normal cores that can perform 32-bit integer or floating-

point arithmetic, and 1 transcendental core that can perform

transcendental functions such as trigonometric or exponential

functions.

16 thread processors are grouped into a SIMD engine.

All thread processors in a SIMD engine performs the same

instruction at any time, but on there private registers; different

SIMD engines can perform different instructions. In a pro-

grammer’s view, the width of each SIMD engine is 64 due to

hardware switching of threads. The bundle of 64 threads that

simultaneously run on a SIMD is called a wavefront. The run

time of a wavefront is determined by the slowest thread in it.

In RV870, there are 20 SIMD engines.

There are two types of kernels (programs run on the

GPU), pixel shader (PS) and compute shader (CS). Here we

only introduce the CS, in which threads are organized in

groups. Each group consists of 1 or more wavefronts. These

wavefronts are guaranteed to be run on the same SIMD engine,

and thus can share data through the local data share memory

(LDS, introduced later). Threads in different group can not

share data through the LDS.

2) Memory Hierarchy: In RV870, several memory re-

sources can be used, each with different accessing constraints

and speed.

general purpose registers (GPRs) are the fastest memories.

Each thread has access to up to 127 GPRs in float4 type,

which is a short vector with 4 single precision floating point

elements, named x, y, z and w.

local data sharing memory (LDS) - Each SIMD engine has

a 32KB dedicated LDS memory which enables low latency

data sharing between threads in the same SIMD. On RV870,

the LDS is organized in 32−𝑏𝑎𝑛𝑘×256−𝑟𝑜𝑤 structure. Each

memory entry is 32-bit wide. Multiple threads accessing to a

same bank will result in bank conflict, and the access will

be serialized. The LDS supports random access and several

atomic operations.

off-chip graphic memory is the largest and slowest memory

resource. It supports several access models: image, UAV or

global buffer. In CS mode, we regard input-only resources

as images, since image resource supports Texture sampling,

which is cached reading from the memory to GPRs. Linear

buffers can be regarded as Uniform Access Views (UAVs) or

the Global buffer, which have read/write access for all threads.

On RV870, several UAVs are supported, however, only one

global buffer is supported. UAVs and the global buffer also

support several atomic operations.

B. Brain Networks Construction

As discussed in Section II-A, to construct a functional Brain

Network from fMRI data, we need to obtain the Pearson’s

correlation of all pairs of voxels. This operation is very

suitable for mass parallel processors such as GPUs, since

the computation of different pairs of voxels can be fully

parallelized.

Before the correlation matrix calculation, the first and

second moments, i.e.
∑𝐿−1

𝑡=0 𝑣𝑖(𝑡) and
∑𝐿−1

𝑡=0 𝑣2𝑖 (𝑡) of all

series are obtained. The moments and series of all voxels are

transferred to the graphic memory. The space requirements are

in the order of 𝑂(𝑁𝑣𝐿). The GPU kernel computes the cross

correlation term of each pair of voxels, i.e.
∑𝐿−1

𝑡=0 𝑣𝑖(𝑡)𝑣𝑗(𝑡)
for each pair (𝑖, 𝑗).

A straightforward way of implementing the construction

algorithm is to use each of GPU thread to calculate one cor-

relation. However, there are several characters and constraints

of the GPU platform that should be taken into consideration.

Algorithm 1: Construction of the Correlation Matrix

input : Series of voxels,

𝑣𝑖(𝑡), 𝑖 = 0..𝑁𝑣 − 1, 𝑡 = 0..𝐿− 1
First and second moments of series,

𝑚
(1)
𝑖 ,𝑚

(2)
𝑖 , 𝑖 = 0..𝑁𝑣 − 1

begin
Get corresponding 𝑖 and 𝑗 from Thread/Group ID

𝑡← 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷; 𝑎𝑐𝑐← 0;

while 𝑡 < 𝐿 do
𝑎𝑐𝑐← 𝑎𝑐𝑐+ 𝑣𝑖(𝑡) ∗ 𝑣𝑗(𝑡);
𝑡← 𝑡+ 64;

end
Binary reduction of 𝑎𝑐𝑐 in LDS, the result is stored

in 𝑎𝑐𝑐 of Thread 63

if ThreadID==63 then

𝑟𝑖,𝑗 = ∣ 𝑎𝑐𝑐−𝑚
(1)
𝑖 𝑚

(1)
𝑗 /𝑛√(

𝑚
(2)
𝑖 −𝑚

(1)2
𝑖 /𝑛

)(
𝑚

(2)
𝑗 −𝑚

(1)2
𝑗 /𝑛

) ∣;

Output 𝑟𝑖,𝑗 ;

end
end

In our implementation, we use 64 threads (i.e. a wavefront)

to calculate each correlation, where 64 is the width of SIMD

engine in AMD GPUs we use. The pseudo-code of GPU

kernel is presented in Algorithm 1. Threads in a wavefront

fetch the corresponding data and calculate
∑(𝐿−1)/64

𝑘=0 𝑣𝑖(64𝑘+
𝑇𝑖𝑑)𝑣𝑗(64𝑘 + 𝑇𝑖𝑑) (where 𝑇𝑖𝑑 is the ID of threads within a

wavefront) before joining there intermediate results into one,

using binary reduction, and calculate 𝑟𝑖,𝑗 . The series of data of

each voxel is consecutively stored in graphic memory. Hence,

by using a wavefront to obtain one correlation, memory fetch

can be coalesced, illustrated in Figure 3.

596

��������		
���
��

��������		
���
��

�� �� �� �� ��������� ������������������

�����
�������

��!�����

"��������		
�

#�������
�����
���������$�%�&
'���
��
(���(

��� ��� ��� ���

��� ��� ���

���

Fig. 3. Network Construction: a wavefront coalesced fetches the data of
𝑣𝑖 and 𝑣𝑗 ; each thread calculates a partial result of the dot product and
performs a wavefront-wide reduction in the LDS; thread T63 finally computes
the correlation and writes to the output buffer.

The full correlation matrix, with 𝑂(𝑁2
𝑣) space requirement,

is too large to fit into the graphic memory. Considering its

symmetry, only the upper half of the matrix is calculated.

However, it is still not applicable to invoke the GPU kernel

once and keep the results on the graphic memory before the

kernel ends. In our implementation, a fixed amount of data

is calculated for each kernel invocation. This piece of data is

transferred back on to the system memory while the GPU

kernel is invoked again for another tile of data. CPU will

post-process the tile of resultant data if we expect the binary

matrix represented as adjacency list. This implementation can

be easily scaled to build networks with higher resolution,

without the demand for higher graphic memory space.

C. Brain Networks Modularity
According to Section II-B, the community structure detec-

tion requires huge amount of computation for eigenvalues and

eigenvectors, which makes this approach impractical when the

network scale becomes extremely large. However, compared

to the variety of fast algorithm of network modularity in the

past, this approach is particularly effective in producing good

results[15].
The core operation of the modularity detection algorithm

(See Section II-B) is the computation of u and 𝛽, which is done

for each subdivision. First, we use the power method[17] to

compute the leading eigenvalue 𝛽. If 𝛽 ≥ 0, 𝛽 = 𝛽. Otherwise,

when 𝛽 < 0, we shift the matrix as B(𝐺) − 𝛽I, so that all

the eigenvalues of the new matrix are nonnegative. Hence,

𝛽 = 𝛽1 − 𝛽 is the needed eigenvalue of the original matrix,

where 𝛽1 is the leading eigenvalue of the shifted matrix, also

obtained by the power method.
By examining equation 7 and 12 more carefully, it could be

noticed that:∑
𝑙∈𝐺

𝐵𝑖𝑙 =
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖𝑘𝑙
2𝑚

=
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖
2𝑚

∑
𝑙

𝑘𝑙 (13)

The two sums would not change throughout the entire power

method, so they could be computed only in the beginning of

each round. The sum d is defined as follows:

𝑑𝑖 =
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖
2𝑚

∑
𝑙

𝑘𝑙 (14)

To compute d, we first define s(k), the 𝑘th separator:

𝑠
(𝑘)
𝑖 =

{
1, if 𝑢

(𝑘)
𝑖 ≥ 0,

0, if 𝑢
(𝑘)
𝑖 < 0

(15)

Then d can be compute as follow:

d(𝑖) = A× s(𝑖) − k𝑇 × s(𝑖)

2𝑚
k (16)

The fact that the dimension of B(𝐺) changes in subdivisions

(See Equation 12), rendering the eigenvalue and eigenvector

computation more complicated. To solve this problem ,B′, an

𝑁𝑣-dimensional matrix is introduced:

B′ = B− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛} (17)

= A− k𝑇 × k

2𝑚
− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛} − 𝛽I (18)

In each iteration of power method:

Y𝑘 =
B′ ×Y𝑘−1

∥B′ ×Y𝑘−1∥2 (19)

= AY𝑘−1 − k𝑇Y𝑘−1

2𝑚
k− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛}Y𝑘−1 − 𝛽Y𝑘−1

(20)

Y𝑘 is the vector of the 𝑘th iteration, 𝛽 is the leading eigenvalue

if it is negative and 0 in the beginning. We notice that we could

multiply Y𝑘−1 with s(i):

𝑦
′(𝑘−1)
𝑗 = 𝑦

(𝑘−1)
𝑗 ∗ 𝑠(𝑖)𝑗 , 𝑗 = 1 . . . 𝑛 (21)

Then we multiply the result Y𝑘 with s(i). In this way,

the dimension of B′ remains unchanged during the power

iterations.

To sum up, we re-organize Newman’s algorithm to a parallel

program. We specifically design the implementation based on

AMD GPU architecture by partitioning the serial algorithm

into several basic linear algebra operations. The system chart

of our modularity implementation is illustrated in Figure III-C.

The modularity detection algorithm is based on iterations.

Each iteration of the outer loop generates a subdivision vector

based on the eigenvector. There is also an inner loop inherent

in the power method for eigenvector calculation. Hence, the

algorithm is fundamentally serial. As a result, it is difficult

to migrate the entire algorithm to GPU platform. Instead, we

implement a finer granularity acceleration of the algorithm.

That is, we designed the basic matrix operations such as

CSR sparse matrix multiplication and vector addition and

multiplication. The general scheduling is performed by CPU

and the most time-consuming matrix calculations is done by

GPU. As the vectors and sparse matrix is loaded to GPU buffer

before the calculation and remain unchanged throughout the

computation, our approach fully utilized the GPU’s advantages

in parallel computing.
1) Eigenvalue calculation: The most resource consuming

part of the algorithm is the computation of leading eigenval-

ues, which is generally difficult when the matrix are large.

An effective method is the power method[17], in which an

approximate eigenvector is iteratively multiplied by the matrix,

until convergence. This method is particularly effective for

large sparse matrices.

597

�
�� �

�

�

�

�

�� �
� 	

 � � �

 �

���� � � ���

�
� �� �

��	

��	 �

�

�

��	
�

�
�
��
�

�

� � ��
� �

�
�

�
� � � �� � � �

��
��

Fig. 4. System Chart of our GPU implementation of Newman’s Modularity
Algorithm.

In our case, although our Brain Network is represented

by sparse real-symmetric matrix, the actual matrix that need

eigenvalue computing is B(G) or B(𝐺), as we defined at Sec-

tion II-B, which is dense. Dense matrix-vector multiplication

is a time and space consuming operation. Fortunately, we find

that the computation can be divided into two parts: one of

them is multiplication between sparse matrix and vector, the

other is multiplication between vectors. The pseudo-code is

shown in Algorithm 2.

2) Partition: In the previous Section II-B, finding the

division of a network is to find s which is parallel to the

eigenvector of equation 7 corresponding to the most positive

eigenvalue. Then we defined the separators s(i) who simplified

out calculation. The final output of our modularity program is

a 𝑁𝑣×𝑀 vector group S, 𝑁𝑣 is the number of vertices in the

network and 𝑀 is the number of communities we detected.

We have

𝑆𝑖𝑗 =

{
1, if vertices 𝑗 belongs to community 𝑖,

0, otherwise
(22)

After the eigenvector computation, the ones in s(𝑖) are

divided into two groups according to the signs of each ele-

ments of the eigenvector. So the whole process of division

is performed as a top-down tree structure, each branches

will continue to divide until the biggest eigenvalue becomes

negative or less than a threshold, which we can use to control

the number of partitions. We illustrate the partition flow in

Figure III-C2.

Algorithm 2: Eigenvalue computation of Modularity

input : CSR sparse matrix A,

a 𝑁𝑣 × 1 vector s𝑖𝑛,

a 𝑁𝑣 × 1 vector k
output: float point eigenvalue 𝛽,

a 𝑁𝑣 × 1 vector s𝑜𝑢𝑡
begin

𝛽𝑏𝑖𝑎𝑠 ← 0;

d = A× s𝑖𝑛 + k𝑇×s𝑖𝑛
2𝑚 k;

while 𝑠𝑖𝑔𝑛𝑎𝑙 < 0 do
initialize x; x← x. ∗ s𝑖𝑛;

𝑑𝑒𝑔𝑟𝑒𝑒← k𝑇 × x;

while ∣𝛽 − 𝛽
′ ∣ < 𝜖 do

x
′ ← x; 𝛽

′
= 𝛽;

y← A× x;

y← y − 𝑑𝑒𝑔𝑟𝑒𝑒 ⋅ k− d. ∗ x− 𝛽𝑏𝑖𝑎𝑠x;

y← y. ∗ s𝑖𝑛;

𝛽 ← ∥y∥2;

x← y;

end
if 𝑚𝑎𝑥∣𝑥𝑖∣ ⋅𝑚𝑎𝑥∣𝑥′

𝑖∣ > 0 then 𝑠𝑖𝑔𝑛𝑎𝑙← 1;

else 𝑠𝑖𝑔𝑛𝑎𝑙← −1;

𝛽𝑏𝑖𝑎𝑠 ← 𝑠𝑖𝑔𝑛𝑎𝑙 ⋅ 𝛽;

end
for 𝑖← 0 to 𝑁𝑣 − 1 do

if 𝑥𝑖 > 0 then 𝑠
(𝑜𝑢𝑡)
𝑖 ← 1;

else 𝑠
(𝑜𝑢𝑡)
𝑖 ← 0;

end
end

�� �

�
�

��
�

���
�

���
�

�

Fig. 5. Data input & output flow chart of our modularity implementation.

IV. EXPERIMENTAL RESULTS

The computing platform in our experiments has a quad-core

Phenom II 956 CPU running at 3.4GHz, 8GB DDR3 memory,

a Radeon HD 5870 graphic card with RV870 core at 850MHz

and 1GB GDDR5 memory. Our GPU kernels are written in

ATI Intermediate Language (IL) [16].

A. Construction

The data we use in our experiments are acquired from

BOLD fMRI scanning. For now, we only handle the grey

598

matter of human brain, which contains 𝑁𝑣 = 38368 voxels

at 3mm resolution.

Table I shows the comparison of running time for con-

structing Brain Networks between our GPU implementation

and single-core CPU. To better analysis the performance

and bottlenecks of the GPU implementation, we divide the

execution time into several parts. The Moments time is the

cost of 1st and 2nd moments calculation including the transfer

cost of MRI data to the GPU memory. The adjacent list

computing time includes correlation calculation, data transfer

and threshold applying. The Correlation time is the running

time of GPU kernel function, and the Transfer time is the cost

of transferring correlations to CPU, as is described in Section

III-B. Threshold applying is performed by CPU, so the costs

are identical between single-core CPU and GPU implemen-

tations. The experimental results show that our accelerated

GPU implementation achieves a 29x speedup in correlation

computing and a 24x speedup overall.

TABLE I
BRAIN NETWORKS CONSTRUCTION SPEED COMPARISON (IN SECONDS)

Moments
Adjacent list

Total
Correlation Transfer Threshold

GPU 0.04 32.35 3.33 6.41 42.13
CPU 0.10 1020.33 6.04 1026.47

Speedup 2.5x 28.6x 24.4x

There are two main restraints to our GPU implementation

for a better speedup. First of all, there are massive memory

fetch operations compared with simple ALU operations. There

are ⌈230/64⌉ = 4 read operations in each thread and one

global memory write operation in each wavefront. Secondly,

the parallel ’mapping’ parts are too simple compared with the

serial ’reduction’. As described in Section III-B, each thread

performs the multiplication of at most 4 pairs of elements, but

the 64th thread in the wavefront performs 6 times of LDS fetch

and addition as well as the calculation of the entire Equation

2.

However, we can improve the performance of our imple-

mentation by utilizing multiple GPU platforms. Theoretically,

only the correlation calculation would be influenced. Ideally,

when we use 2 identical GPU platforms, the data transfer

time would be doubled and the kernel function time would be

halved. Based on these assumptions, we could achieve a 45x

speedup in correlation calculation and a 35x speedup overall

for network construction.

B. Modularity

The modularity computation costs a considerable time and

divides the network in to thousands of communities. The

CPU version requires so much time that we cannot finish

the full division of the network. In response to that, we

truncate the calculation to the first 100 iterations and compare

the single-core CPU results with GPU. Table II shows the

speed comparison. (Note: iterations are of the outer loop of

Algorithm 2.)

In practical, we prefer detecting the most significant parts

of the Brain Network rather than dividing them to the smallest

TABLE II
BRAIN NETWORKS MODULARITY SPEED COMPARISON (IN SECONDS)

CPU RV870 Speedup
First 100 iterations 74496.97 928.73 80x
Slowest iteration 2515.55 31.68 79x
Fastest iteration 3.78 0.29 13x

groups. Therefore, we want to control the number of subgroups

produced by the modularity algorithm. This is done by setting

up a eigenvalue threshold, 𝑟𝑒. A branch of division is termi-

nated when the eigenvalue is below the threshold rather than

below 0. That is to say, we end the division when it provides

not necessarily no benefits to the modularity of the entire

network, but when the benefits is less than expected. However,

we should point out that this approach does not suffice

the optimal division under our ”expectation”. The reason is

that our modularity method is a kind of greedy-algorithm

which means each division is local optimum yet does not

guarantee global optimum. This is discussed at length in [15].

Nevertheless, despite the possibility of slight inaccuracy, the

general image provided by our method is acceptable. Table III

shows the relationship between the eigenvalue threshold and

the number of partitions of the network.

TABLE III
EIGENVALUE THRESHOLD AND DIVISIONS UNDER 𝑟𝑡ℎ = 0.75

Eigenvalue Threshold (𝑟𝑒) Divisions Time (sec)
100 225 928.73
110 49 906.08
125 28 496.31
130 20 441.64
140 7 116.55
150 7 113.79
200 4 78.26

Table IV shows the profiling of our GPU implementation of

Network Modularity. The results are calculated for networks

constructed under 𝑟𝑡ℎ = 0.78 , and the number of divisions

is controlled by eiganvalue threshold 𝑟𝑒. From the results

we can see that the Sparse Matrix and Vector multiplication

(SPMV) takes most of the time in the program. Our SPMV

and basic vector operations are optimized for AMD GPU

platforms. The implementation details and results of our GPU

implementations of SPMV and vector operations are discussed

in [18]. Furthermore, the data transfer costs little time in our

implementation. The input data are the sparse adjacent matrix

of the Brain Network, and the output data are the partition

vector. As a result, the performance of our implementation

can be further improved by multiple GPU platforms in the

same way as discussed in Section IV-A.

TABLE IV
PROFILING OF THE GPU IMPLEMENTATION OF NETWORK MODULARITY

UNDER 𝑟𝑡ℎ = 0.78

Divisions Data Input SPMV Vector OPs Data Output Total
305 0.22 1734.78 266.33 0.78 2002.11
42 0.22 452.37 49.80 0.09 507.48
9 0.22 168.98 14.11 0.01 183.32

By mapping the partition results to the grey matter on the

599

human brain, we can display the actual position of each groups

in pictures. Here we draw the images of the modularity of

𝑟𝑒 = 200 and 𝑟𝑡ℎ = 0.75 when 4 subparts are obtained from

the computation, as is illustrated in Figure 6.

(a) x-y plane

(b) y-z plane

Fig. 6. Dividing the Brain Network into 4 parts: each part corresponds to
one row in the figure, marked as bright white.

V. CONCLUSION

In this work, we propose a novel approach of accelerating

the computation of Brain Networks’ construction and analysis.

We implemented the network construction and modularity

analysis and achieved considerable speedups on both algo-

rithms. Our work provides a solution against the computational

limits that impede the study of voxel-based Brain Network.

In constructing the voxel-based Brain Network, we provide

a higher resolution picture of the human brain. The smaller the

scale of unit in the network is, the more accurate the results

can be. While giving more accurate positions of the potential

hubs in the network, we greatly reduce the time of voxel-based

Brain Network construction.

The modularity of voxel-based Brain Network provides

a clear picture of the connectivity pattern of human brain

cells. In the past, most of the research on the functional

characteristics of the brain has been based on the anatomical

segmentation. The modularity of voxel-based Brain Network

gives a new way to find the community structure of the

brain based on the connectivity information of each voxels.

Our acceleration of the algorithm overcomes the computation

obstruction and, more importantly, produces better and more

detailed results.

There is a myriad of Brain Network analytic methods

that can be accelerated. We are going to form a long-term

cooperation with Brain Network researchers and keep on the

work of acceleration. Our implementation of Brain Network

construction and modularity can be improved as well. For

instance, in each division it is redundant to calculate the

entire 𝑁𝑣 × 𝑁𝑣 matrix. The algorithm can be optimized.

Moveover, our implementation can be extended to multiple

GPU platforms to further improve performance.

REFERENCES

[1] O. Sporns, G. Tononi, and R. Ktter, “The human connectome: A
structural description of the human brain,” PLoS Comput Biol, vol. 1,
no. 4, p. e42, 09 2005.

[2] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nat Rev Neurosci, vol. 10,
pp. 186–198, 2009.

[3] Y. He, Z. Chen, G. Gong, and A. Evans, “Neuronal networks in
alzheimer’s disease,” Neuroscientist, vol. 15, no. 4, pp. 333–350, 2009.

[4] K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, “Net-
work analysis of intrinsic functional brain connectivity in alzheimer’s
disease,” PLoS Comput Biol, vol. 4, no. 6, p. e1000100, 06 2008.

[5] Y. He, J. Wang, L. Wang, Z. J. Chen, C. Yan, H. Yang, H. Tang,
C. Zhu, Q. Gong, Y. Zang, and A. C. Evans, “Uncovering intrinsic
modular organization of spontaneous brain activity in humans,” PLoS
ONE, vol. 4, no. 4, p. e5226, 04 2009.

[6] J. Wang, L. Wang, Y. Zang, H. Yang, H. Tang, Q. Gong, Z. Chen,
C. Zhu, and Y. He, “Parcellation-dependent small-world brain functional
networks: a resting-state fmri study,” Human Brain Mapping, vol. 30,
no. 5, pp. 1511–1523, 2009.

[7] D. A. Fair, A. L. Cohen, J. D. Power, N. U. F. Dosenbach, J. A. Church,
F. M. Miezin, B. L. Schlaggar, and S. E. Petersen, “Functional brain
networks develop from a local to distributed organization,” PLoS Comput
Biol, vol. 5, no. 5, p. e1000381, 05 2009.

[8] M. Valencia, M. A. Pastor, M. A. Fernández-Seara, J. Artieda, J. Mar-
tinerie, and M. Chavez, “Complex modular structure of large-scale brain
networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 19, no. 2, p. 023119, 2009.

[9] J. Krüger and R. Westermann, “Linear algebra operators for gpu
implementation of numerical algorithms,” in SIGGRAPH ’05: ACM
SIGGRAPH 2005 Courses. New York, NY, USA: ACM, 2005, p. 234.

[10] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” High Performance Computing, vol. 4873, pp. 197–
208, 2007.

[11] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for large
graphs on the gpu,” in GH ’08: Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2008, pp.
47–55.

[12] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, vol. 42, no. 1, pp.
59–66, 1988.

[13] P. Pons and M. Latapy, “Computing communities in large networks using
random walks,” Journal of Graph Algorithms and Applications, vol. 10,
no. 2, pp. 191–218, 2006.

[14] M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133, Jun 2004.

[15] ——, “Finding community structure in networks using the eigenvectors
of matrices,” Phys. Rev. E, vol. 74, no. 3, p. 036104, Sep 2006.

[16] ATI Intermediate Language (IL) Specification, Advanced Micro Devices,
Inc., Dec 2009.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.

[18] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and N. Xu, “Efficient
pagerank and spmv computation on amd gpus,” in Proceedings of
the 39th International Conference on Parallel Processing (ICPP-2010),
2010.

600

