

On-line MPSoC Scheduling Considering Power Gating
Induced Power/Ground Noise

Yan Xu1, Weichen Liu2, Yu Wang1, Jiang Xu2, Xiaoming Chen1, Huazhong Yang1

1Department of Electronics Engineering, Tsinghua University, Beijing, China
2Hong Kong University of Science and Technology, Hong Kong, China

E-mail: {waterphy@gmail.com, yu-wang@tsinghua.edu.cn, jiang.xu@ust.hk }

Abstract
Power gating induced power/ground (P/G) noise is a major

reliability problem facing by low power MPSoCs using power
gating techniques. Powering on and off a processing unit in
MPSoCs will induce large P/G noise and can cause timing
divergence and even functional errors in surrounding
processing units. P/G noise is different from thermal or energy
which is an accumulative effect. The noise level should be
predicted and victim circuits should be protected before the
noise is induced. Hence, the power gating-aware scheduling
problem with the consideration of P/G noise should be solved
using an on-line method considering the run-time variation of
tasks' execution time. In this paper, we formulate an on-line
task scheduling problem with the consideration of P/G noise
based on our detailed P/G noise analysis platform for MPSoC.
An efficient on-line Greedy Heuristic (GH) algorithm that
adapts well to real-time variations is proposed to reduce noise
protection penalty and improve MPSoC performance. Our
experiments show that the algorithm can achieve on average
26% performance improvement together with on average 73%
noise protection penalty saving compared with the conservative
stop-go method. We also compare our technique with a two-
step solution that computes a static schedule at compile time
and make adjustment on the schedule according to runtime
variations. For benchmark with larger task number, GH
method achieves impressive performance improvement
comparing with the two-step solution.

1. Introduction
Power gating induced power/ground (P/G) noise is one of the

most significant reliability threats for MPSoCs with smaller feature
sizes. Tight low power requirements have forced MPSoC to
aggressively adopt low power techniques such as dynamic
voltage/frequency scaling, clock gating, and power gating [1,2].
While low power techniques like power gating can dramatically
reduce power consumption for idle processing units (PUs), they
exacerbate simultaneous switching noise (or di/dt noise) on the
power delivery network. Such MPSoC P/G noise can result in
performance degradation and even functional errors. At the same
time, when process technology advances, power consumption and
wire resistance have gone up while the supply voltage drops. Thus
the chip noise margin will go down. As a result, to design resilient
systems, design methodologies with P/G noise management
become necessary to fulfill the low power and high reliability
requirements of MPSoCs.

MPSoCs use multiple PUs to deliver massive parallel processing
performance within a limited power budget. However, all the PUs
are often not working at the same time, and some of them are idle
and consume significant leakage power in deep submicron process.
Power gating is one of the most effective low power techniques
widely adopted to save the ever-increasing leakage power
consumption of the idle PUs. When a PU finishes a task or a new
task is assigned to a power-off PU, MPSoC needs to power off or

 This work was supported by grants from 863 program of China (No. 2009AA01Z130), and
NSFC (No. 60870001) and TNList Cross-discipline Foundation.

on a PU. These procedures cause large P/G noise in the MPSoC
power delivery network, which then propagates to other PUs and
endangers their normal operations. Hence, if a new task is assigned
to a power-off PU, the active PUs around it need to be protected
from the powering-on attack; similarly, if a PU finishes a task to be
powered off, the active PUs around it also needs to be protected
from the powering-off attack. In the open literature, there are few
studies addressing such noise issues in MPSoCs.

Previous works on P/G noise mitigation mainly focused on
circuit level techniques for logic blocks. The proposed techniques
include sleep transistor designs [3,4], decoupling capacitor
insertion [5], and P/G noise-aware floorplanning [1,2,6]. Recently,
power gating sequence scheduling [7-9] in a block or several
blocks were proposed to tradeoff wake-up time for P/G noise
reduction. These works mainly focused on block level design
techniques, while in this paper, we investigate processor-level
power gating scheduling based on our detailed P/G noise analysis
platform for MPSoC to minimize the performance impacts due to
the protection overhead during powering-on/off PUs.

On the other hand, numerous efforts have been paid to optimize
the scheduling problems with power/performance/thermal object-
ives [10-16]. However, P/G noise is different from thermal or
energy which is an accumulative effect. Recent work by Reddi et al.
[17] based on [18] proposed a voltage emergency predictor that
learns the signatures of voltage emergencies (the combinations of
control flow and microarchitectural events leading up to them) and
uses these signatures to prevent recurrence of the corresponding
voltage emergencies. The noise level should be predicted [17] and
victim circuits should be protected before the noise is induced.
Hence, the power gating-aware scheduling problem with the
consideration of P/G noise should be carefully modeled and solved
using an on-line method considering the run-time variation of tasks'
execution time; or solved off-line based on an accurate P/G noise
estimation, and then assisted by a fast on-line adjustment method
considering the run-time variation. Recent work from Todri [19]
considered the P/G noise induced by switching current when the
tasks are running on PUs to minimize the P/G noise level of multi-
core systems. In this paper, we mainly focus on modeling and
management of the noise induced by powering-on/off a PU when a
task is assigned to or finishes on a PU.

Based on the above discussion, our work distinguishes itself
from previous works in the following aspects: 1) We formulate an
on-line task scheduling problem (Section 4) with the consideration
of power gating induced P/G noise based on our detailed P/G noise
analysis platform for MPSoC (Section 2/3). The PU states of P/G
noise-aware on-line scheduling problem and the impact range for
powering-on/off a PU in MPSoC are defined in the problem model.
2) Based on the MPSoC P/G noise modeling considering both
spatial and temporal constraints, an efficient on-line Greedy
Heuristic (GH) algorithm (Section 4/5) that adapts well to run-time
variations and real-time decision requirement is proposed to reduce
noise protection penalty and improve MPSoC performance.
Impacts on MPSoC performance of considering different factors
during on-line scheduling decisions are also studied. 3) We also
compare on-line GH algorithm with a two-step solution: Static
Scheduling method (Simulated Annealing (SA) algorithm here)

2009 IEEE Computer Society Annual Symposium on VLSI					

978-0-7695-3684-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ISVLSI.2009.54

109

accompanied by On-Line Adjustment (OLA) strategy (SSOLA)
(Section 5/6). The benefit and loss of each method in different task
cases are studied (Section 7).

2. P/G Network Modeling of MPSoC
The MPSoC chip is composed of Processing Units (PUs). They

are placed as a mesh shown in Fig. 1.

Fig. 1. P/G network architecture of MPSoC.

2.1 On-chip P/G Network model
The most common way to distribute power in a GSI (gigascale

integration) chip is to distribute it through an on-chip grid made of
orthogonal segments (Fig. 1) [20,21]. The horizontal and vertical
segments of a grid are routed at different metal levels (e.g. at the
layers of Metal 5 and Metal 6) and are connected though vias at the
crossing points. A wire between two nodes is simply modeled as a
lumped resistance Rseg and an inductance Lseg (Fig. 2). Cd denotes
the capacitance per unit area between a power grid node and the
adjacent ground grid node (including both the intentionally added
on-chip decaps and the equivalent capacitance between the wires at
different metal levels). CL is the load capacitance.

Rseg

CL
in inv

Rseg

Rseg

Rseg

Lseg

Lseg

Lseg

Lseg

Cd

Fig. 2. In order to facilitate the P/G network analysis, each wire
segment is modeled as a chain of L-type RLC equivalent circuits.
An inverter with a capacitance load is used to imitate the core logic.
A decap is connected to the intersection points on the vdd/vss grids.

2.2 Package Model
In flip-chip package technology, the package I/O pads are

connected to the chip I/O pads through metal bumps distributed
across the chip surface. The flip-chip package is more expensive
than a wire bond package. However, it has smaller I/O parasitics
[22]. The distributed pads also help increase total I/O count and
consequently lower the P/G noise. Two-thirds of the total pads are
used for power distribution [23] in our model. These power and
ground pads are spread throughout the chip surface. The pad and
bump are simply modeled as a package resistance and a package
inductance. An off-chip decoupling capacitance is added between
the virtual power node and the virtual ground node of each PU.
Meanwhile, the PCB board is modeled as a lumped resistance and
inductance network.

3. Power Gating induced P/G Noise in MPSoC

3.1 P/G Noise Estimation in MPSoC
Table 1. PU states in P/G noise-aware power gating scheduling

PU States Illustration
Off state Power gated.
ToOn state The off to on transition. The start time of the

transition for PU p to execute task i is defined as
ton(i).

ToOff state The on to off transition. The end time of the transition
for PU p just finished task i is defined as toff(i).

Idle state Clock gated (power is on).
ClkToOff state Clock gate transition.
ClkToOn state Clock wake up transition.
Free state Both power and clock are on, but there is no task

running on the PU.
Active state A task is running on the PU.

The PU states of on-line task scheduling considering power
gating induced P/G noise are defined in Table 1. The noise induced
by turning on/off PUs in different locations in MPSoC is evaluated.
Assuming all the PUs induce the same supply current and have
identical capacitance density, an inverter is put between a power
grid node and its adjacent ground grid node to represent the PU
switching activity. The inverter size is chosen according to the
average power consumption requirement for typical PUs. The
simulation uses the 45nm bulk CMOS model [24] for transistors
(Vdd=0.8V). The standard cell library is from the Nangate Open
Cell Library [25].

1) P/G Noise Generation and Propagation: A homogeneous
MPSoC is modeled with a set of PUs, PU=PUp; p=1, 2, …, N. A
ToOn/ToOff PU is defined as an attacker. A PU, which carries an
active task, is defined as an active PU. An Active PU within the
impact range of an attacker is defined as a victim. (Please note that
some power-on PUs could be Idle or Free, and they are not victims
in our definition.) For a PU p, Rimpact

p is defined as the set of the
victims of an attacker p, while PV(p) is defined as a set of PU p’s
potential victims, namely PV(p)={q| q∈PU, q≠p and q is in the
impact range of p}. The number of PU p’s potential victims is
denoted by NPV(p).

0

0.8

Time (s)

V
dd

-V
ss

 (
V
)

A PU out of the impact range of an attacker p
A victim q
An attacker p

Tsettle
p

Vsafe

Tsafe
pq

Fig. 3. A conceptual illustration of P/G noise temporal influence.

The conceptual illustration of the P/G noise temporal influence
in MPSoC is shown in Fig. 3. We obtain the impact (e.g. on delay
increment) of P/G noise with different amplitudes on standard logic
cells and D Flip-Flop through simulation. Safe voltage levels are
set for different cells to satisfy the performance (e.g. delay
relaxation) requirement, and then a safe voltage level for a PU can
be calculated as Vsafe. Tsettle

p is the minimum time required for the
voltage difference between Vdd and Vss node pairs of an attacker p
to be stabilized above the safe voltage level Vsafe. The measurement
of Tsettle

p is started at the beginning of the switching event. Tsafe
pq is

the earliest time point after which Vdd-Vss of a victim q is stabilized
above Vsafe. TIsafe

pq is the time from the beginning of the switching
event to Tsafe

pq. These parameters are extracted from our P/G
network simulation.

2) P/G Noise Protection Method: If we assign a task i to a power
gated PU p, the powering-on/off noise when the task
begins/finishes will attack the PUs in Rimpact

p which is provided
through our P/G model. The noise protection method is to clock
gate the victim PUs before powering on or off the attacker and to

110

wake up them when the attacker is fully turned on or off. Fig. 4
shows the timing of a power on event, and the timing of a power
off event is similar.

Fig. 4. Timing of a power on event.

Tclkoff and Tclkon are the time needed to clock gate a PU and to
wake it up from the clock gated state, respectively. Tonsettle and
Toffsettle are the settle time for a PU to power on and power off. In
order to ensure the reliability of MPSoC, here Tonsettle≥max{Tsettle

p,
TIsafe

pq , ∀ p, q∈PU, q≠p}, Toffsettle≥max{Tsettle
p, TIsafe

pq , ∀ p, q
∈PU, q≠p}. TION and TIOFF are the noise protection time penalty
for a victim PU when an attacker powers on and off respectively,
where TION = Tclkoff + Tonsettle + Tclkon, TIOFF = Tclkoff + Toffsettle +
Tclkon. Assume that the victim number of PU p as an attacker at the
moment t is Nvictim(p,t). we define Pon(p,t) and Poff(p,t) as the total
performance penalty to power on and power off attacker p,
respectively, where Pon(p,t)=TION×Nvictim(p,t), Poff(p,t)=TIOFF×
Nvictim(p,t).

3.2 Motivation Example
We illustrate the benefit of the noise-aware processor level

power gating strategy by taking a MPSoC with 4×4 PUs as an
example. The peak P/G noise levels of PUs induced by attackers
located at different locations are shown in Fig. 5. Different impact
ranges can be observed: for PU1 as an attacker, at most 5 PUs need
protection; for PU2, at most 9 PUs need protection; for PU6, all the
other active PUs need protection.

Fig. 5. Noise level and impact range of power gating induced P/G
noise in 16-PU-MPSoC.

To assign a new task, the conservative strategy - stop-go method
(introduced in Section 5.3) will protect all the active PUs (clock
gating them) when turning on any PU. However, based on our P/G
noise model, when the new task is assigned to different PUs, there
may be some PUs which do not need protection. e.g. if the new
task is assigned to PU1, PUs within the always safe range don’t
require protection, and at most 5 PUs will need to be clock gated.
Hence we can improve the MPSoC performance and reduce the
noise protection penalty by carefully scheduling the tasks onto PUs
with different impact ranges.

4. Power Gating-Aware On-line Task Assignment and
Scheduling in MPSoC

Problem Definition: Considering a homogeneous MPSoC with
N PUs, and a set of real-time tasks Task, determine an assignment
of tasks to PUs on-line, such that all task constraints and PU
operation constraints are met, the MPSoC performance is
optimized and the penalty for safeguarding the victim PUs is
minimized.

Table 2. Variables in on-line task scheduling
i Sequence number for each task i∈Task
DAG Link In which nodes represent tasks and directed edges indicate data

dependencies between pairs of tasks.
length_p(i) Predicted ideal execution time for Task i.
length(i) Real ideal execution time for Task i.
treq(i) Request time for Task i.
ts(i) Real start time for Task i.
tf(i) Real finish time for Task i.
ton(i) The start time of the off to on transition for PU p to execute task i.
toff(i) The end time of the on to off transition for PU p just finished task

i.
Tend Finish time for all the tasks and PUs.

4.1 Task modeling for On-line Task Scheduling
Let Task be the set of tasks to be executed. For each task i∈

Task, its request time and predicted ideal execution time without
interruption when running on PU p are denoted by treq(i) and
length_p(i,p), respectively. (length_p(i,p)= length_p(i) since we are
using a homogenous MPSoC.) We use a directed acyclic graph
(DAG) Link in which nodes represent tasks and directed edges
indicate data dependencies between pairs of tasks.

For each task i∈Task, its real start time and real finish time are
denoted by ts(i) and tf(i), respectively. During real-time operations,
because there are various run-time variations in MPSoCs (e.g. the
frequency variation of PUs induced by process variation), the
tasks’ execution time may be different from the original predicted
execution time. tf(i) - ts(i) equals to a task i’s real ideal execution
time without interruption length(i) plus its noise protection
interruption time.

4.2 Constraints for On-line Task Scheduling
Under the assumption of static task assignment problem, all the

tasks request for execution at the very beginning, and the whole
DAG Link and length(i)=length_p(i) (∀ i∈ Task) are known.
Different from the static problem, not all the information of the
tasks are known when a task is to be assigned in the on-line task
assignment problem. Supposing the current time is tc, the manager
of the MPSoC system only knows: the existence and request time
of the tasks whose request time are not later than tc. Once a task i is
assigned and scheduled, ts(i) is also known. tf(i) and length(i) are
not known until task i is finished. Tend is defined as
Tend=max{toff(i), ∀ i∈Task } (finish time for all the tasks and
PUs). At present, Tend is the metric representing MPSoC
performance. CP and PT denote the Clock gating Penalty and the
Power-on/off Times, respectively.

Fig. 6. Extreme conditions of two PUs’ ToOn and ToOff transition
events.

Special timing constraints considering protection and settling
times are introduced. Fig. 6 shows the extreme conditions of two
operations for powering on and off PUs. For the first condition,
task i starts (turning on a PU) right before task j’s finish time
(turning off a PU). ton(i) and toff(j) should satisfy the timing
constraints: ∀ i, j∈Task, i≠j: if ∃ ton(i), toff(j), then ton(i)≤
toff(j)-TIL so that the victim protection procedure for these two
attack operation will not conflict. TIL are defined as:
TIL=Tonsettle+Toffsettle+Tclkoff+Tclkon.

Similarly, for Condition 2: task i finishes right before task j’s
finish time: toff(i) ≤toff(j)-TIOFF; for Condition 3: task i starts right
before task j’s start time: ton(i) ≤ton(j)-TION; for Condition 4: task

111

i finishes right before task j’s start: toff(i) ≤ ton(j)-TIS. Here,
TIS=Tclkoff+Tclkon.

5. Algorithms for On-line Power Gating Scheduling

5.1 On-line Scheduling Algorithm
Greedy Heuristic (GH) algorithm for power gating induced P/G noise-aware on-
line task assignment and scheduling
Input: the task set Task (including DAG Link, treq (i), length_p(i)); the PU set PU
(including the impact relation between PUs); Tonsettle, Toffsettle, Tclkoff, Tclkon.
Output: Tend, CP, PT and the task assignment.
1 Initialize variables;
2 Time node t=0;
3 do
4 if there are requested tasks and their inputs are ready
5 D1: choose a task i to assign;
6 if timing constrains are satisfied
7 D2: choose a PU p to execute task i;
8 if available PU p exists
9 if chosen PU p is Off
10 if Nvictim(p,t)>0 (PU p has some victims)
11 protect victims;
12 power on PU p to execute task i;
13 else
14 power on PU p to execute task i;
15 else
16 assign task i to PU p;
17 else if there are PUs waiting to power off
18 D3: choose a PU p to power off;
19 if timing constrains are satisfied
20 if Nvictim(p,t)>0
21 protect victims;
22 power off PU p;
23 else
24 power off PU p;
25 t++;
26 while there is an un-finished task or an on PU

Fig. 7. On-line heuristic algorithm for P/G noise-aware scheduling.
The on-line task scheduling algorithm (GH) is shown from line

4 to 24 in Fig. 7. We assume that there is a manager to perform
reliability operations in MPSoCs. Once the on-chip reliability
manager receives the signal which reports requested tasks’ input
data are ready, it chooses a task i to assign. According to the PUs’
states, the manager tries to choose a PU p to execute task i, and
synchronously, it records the victim information if there are victims.
If the timing constraints (the last two paragraphs in Section 4.2) are
not satisfied, the task assigning operation will be postponed and
decided until a proper time node. The Free and Off PUs are both
available PUs to execute a task. If the chosen PU p is Free, the
manager directly assign task i to PU p to execute the task. If the
manager decides to power on an Off PU p to execute task i, the
clock off signal is sent to all the victims (if exist) of PU p. Once all
the victims are clock gated, the attacker p begins to be powered on.
After powering on attacker p, the victims protected procedure ends.
The manager start to clock on them, and then victims come back to
resume their tasks.

If there are no tasks waiting to assign, the manager will consider
choosing a PU p to power off. Free PUs and PUs that just finish
task execution are both candidates. If the timing constrains (the last
two paragraphs in Section 4.2) are not satisfied, the powering off
operation will be postponed and decided until a proper time node.
In a similar way of powering on an Off PU and protecting its
victims, the system will protect victims (if exist) and power off PU
p.

As introduced above, in our on-line scheduling algorithm,
assigning a new task has higher priority than powering off a PU.
However, for low power design, if there are no tasks waiting to
assign for the moment and timing constrains are satisfied, a PU
which is Free or just finishes a task will be power gated. The
strategies of key decision D1, D2, and D3 operations (line 5, 7 and
18 in Fig. 7) are detailed in Section 5.2. These decision procedures
are simple enough to satisfy the real time operations in on-line

scheduling problem. Hence, we ignore the decision time and the
communication time for simplicity.

5.2 Detail Strategies in Greedy Heuristic (GH) Algorithm
GH algorithm is proposed for the on-line power gating-aware

task assignment and scheduling problem. Potential differences
occur during the three key decision operations D1, D2, and D3
(line 5, 7 and 18 in Fig. 7). The factor options adopted by different
strategies in following GH algorithm are described as follows.
Basically, assigning new tasks to PUs has higher priority of
execution than powering off PUs; PUs are selected for task
allocation based on their impacts on the running tasks; tasks are
scheduled in the First In First Out (FIFO) [26] order; the frequency
of powering on/off a PU is decided by NPV(p).

The factor options adopted by Strategy 1 in GH algorithm (GH1)
are as follows. During D1, GH1 always runs the task with the
earliest release time. If there are several tasks with the earliest
treq(i), GH1 chooses to always run the longest predicted task.
When we choose a PU to execute the new task (D2 in line 7 of Fig.
7), GH1 gives first priority to Free PUs. If there is no Free PU,
consider Off PUs. If there are several Free PUs, GH1 chooses the
PU with maximal NPV(p). If there are several Off PUs as candidates,
GH1 always powers on the PU with the minimal Pon(p,t). GH1
chooses to always power on the PU with the minimal NPV(p). If
there are several PUs waiting for powering off (D3 in line 18 of Fig.
7), the choosing rule of GH1 is similar to the rule of powering on a
PU.

We also adopt another Strategy 2 in GH algorithm (GH2)
similar to GH1. The only difference is that GH2 chooses to always
run the shortest predicted task during D1.

5.3 GH’s corresponding Stop-go Algorithm
During powering on or off a PU, on-line stop-go algorithm

protects all the other active PUs, while GH algorithm only protects
the active PUs in the attacker’s impact range (see also Section 3.2).
The stop-go algorithm is simpler and safe, but it is conservative
according to our P/G noise model. We implement two stop-go
algorithms stop-go(GH1) and stop-go(GH2) corresponding to GH1
and GH2 respectively.

6. Static Scheduling+On-Line Adjustment (SSOLA)
If length(i)=length_p(i) (∀ i ∈ Task), the task scheduling

problem can be solved off-line by static scheduling algorithm.
However, because of various run-time variations, the static task
scheduling may be not applicable for real time implementation.
Increasing and decreasing execution time of an attacker will cause
potential reliability threaten to its victims. If we still want to use
the static scheduling results (here we obtain the static scheduling
results using a Simulated Annealing (SA) algorithm), an On-Line
Adjustment (OLA) strategy should be adopted to ensure the
reliability of MPSoC. A light weight OLA method is described as
follows:

The real tasks’ execution time will change in two ways
compared with the predicted one: increasing or decreasing.

(1) If the on-line monitors find the real execution time of task i
on PU p will be longer than the predicted one, all the active PUs on
chip will be protected at the predicted finish time of task i (tf(i) in
static scheduling) until the PU executing task i is really powered
off when task i is finished (the real finish time is denoted as tfreal(i)).
The original static task scheduling (task starts time and protection
time) for tasks after tf(i) should be postponed by Tclkoff+ tfreal(i)- tf(i).

(2) If the real execution time of task i on PU p is shorter than the
predicted one, the conservative on-line adjustment strategy is to
keep PU p in Free state and power it off at the predicted power off
time toff(i). The original static task scheduling will not be
influenced.

112

7. Implementation and Experimental Results

7.1 Implementation and Experiment Setup
The P/G noise analysis platform is built up with HSPICE and C.

Scheduling algorithms are implemented with C and MATLAB.
The experiments are performed on a server with 2 Intel Core2
Xeon and 8GB memory.

For different MPSoCs, the average power consumption of a
single PU is kept as a constant around 30mW, and the area of a
single PU is set as a constant 660μm×660μm. Based on the
performance results of standard logic cells and D Flip-Flops with
different P/G noise, the noise toleration of Vdd-Vss is set as 100mV,
hence Vsafe defined in Section 3.1 is set to 700mV. Then the
corresponding Rimpact of each attacker i is derived for 4×4 to 8×8
PU mesh MPSoCs. The Tclkon and Tclkoff are set to be 100 clock
cycles for the time penalty to protect/resume the data and clock-
on/off the victim PU. Tsettle for both powering on and off are set to
200 clock cycles. All the time units in the results are measured by
clock cycles. The P/G network RLC parameters are extracted from
PTM interconnect model [24].

Four task structures are generated as test benchmarks: (1)
TASKNC: tasks with No Correlation, (2) TASKSP: several Sequential
tasks in Parallel, (3) TASKTT: Tree-connected Tasks, (4) TASKFC:
Fully Correlated tasks (a connected DAG with multiple inputs and
multiple outputs). The real execution time of each task is assumed
to vary between -20% and 10% of the predicted execution time.
The predicted execution time (less than 20000 clock cycles) of
each task is random generated with a uniform distribution. In the
following experiment, we assume every task is released at time 0:
for each task i∈Task, treq(i)=0.

7.2 Results for SA/SSOLA/GH/stop-go(GH)
We first evaluate task bench on 4×4 MPSoC to compare the

SA/SSOLA/GH/stop-go(GH) methods shown in Table 3. Tend_i is
defined as ideal finish time for all the tasks assuming that power
gating is not adopted.

The static method is used in an ideal case, assuming
length_p(i)=length(i) (∀ i ∈ Task). Here, we use a Simulated
Annealing (SA) algorithm as the static method. GH algorithm
adopts Strategy 1 (denoted by GH1), and stop-go(GH1) algorithm
is its corresponding stop-go method. In the experiment, the runtime
of SA in SSOLA is from 20 minutes to 20 hours, and on average
the runtime is about 3 hours.

6 8 1012 20 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Task #

T
en

d /
 T

e
nd

_i

SA
SSOLA
GH
stop-go

30 40 60 80
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Task #

T
en

d /
 T

e
nd

_i

SA
SSOLA
GH
stop-go

(a) (b)

Fig. 8. TASKNC with different task numbers on 4×4 MPSoC.
In Fig. 8(a), for TASKNC, with small task number (6 to 20),

generally, the static method gets better results than the on-line ones,
while GH performs best among all the on-line methods: Tend(SA)<
Tend (GH)< Tend (SSOLA)< Tend (stop-go(GH1)). In Fig. 8(b), for
TASKNC, with large task number (30 to 80), our GH still gets the
best performance among the on-line methods, and is even better
than the static method since the static method is hard to get optimal
results: Tend (GH)< Tend (stop-go(GH1)) < Tend(SA)<Tend (SSOLA).

PT of on-line algorithms is much less than PT of SA/SSOLA. For
large task number, GH1 method achieve impressive Tend
improvement comparing with SSOLA: from 7% to 220% of Tend_i,
and this improvement is especially large for TASKNC; CP and PT of
GH1 are from 22% to 96% and from 16% to 88% less than CP and
PT of SSOLA, respectively.

From Table 3, for other three task structures with large task
number, the Tend and PT trends generally match TASKNC ’s. The
results of SSOLA are the worst. However, the relatively value of
Tend(SA) to Tend (GH1) and Tend (stop-go(GH1)) fluctuates a little.

In order to get results good enough, SA and SSOLA need to run
hours off-line. While GH and stop-go algorithms can be used at
real-time. Besides, SA only can solve static problem which is an
ideal case. Only using static method can not solve on-line
scheduling problem. The performance gain from SSOLA is not
obvious compared with the online algorithms proposed in this
paper (up to 4.1% of Tend_i), and as the problems size goes large
(number of tasks larger than 30), it is harder for SSOLA to find
solutions of high quality, and our online algorithms show superior
capability in terms of quality of solution and algorithm running
time.

In a word, for on-line task scheduling problem, the purely on-
line algorithms like GH and stop-go(GH) have more advantages.
Hence, the following experiments will focus on on-line algorithms
only.

7.3 Results for Purely On-line Task Scheduling
Our experiment gets GH1/GH2/stop-go(GH1)/stop-go(GH2)

results for 40 tasks of four task structures on different MPSoCs
(from 4 × 4 to 8 × 8 PUs) and GH1/GH2/stop-go(GH1)/stop-
go(GH2) results for TASKNC and TASKFC with different task
numbers (60 and 80) on 4×4 to 8×8 MPSoC.

16 25 36 49 64
1.5

2

2.5

3

T
e

nd
 /

 T
e

n
d_i

TASK
NC

16 25 36 49 64
1

1.05

1.1

TASK
SP

GH1
GH2
stop-go(GH1)
stop-go(GH2)

16 25 36 49 64
1

1.2

1.4

MPSoC mesh size

T
e

nd
 /

 T
e

n
d_i

TASK
TT

16 25 36 49 64
1

1.1

1.2

MPSoC mesh size

TASK
FC

Fig. 9. GH1/GH2/stop-go(GH1)/stop-go(GH2) methods on 40 task
scheduling on 4×4~8×8 MPSoC.

Both GH1 and GH2 methods achieve impressive Tend
improvement compared with their corresponding stop-go methods:
from 5.8% to 117.1% and from 2.3% to 159.0% of Tend_i,
respectively. Especially, the improvement is obvious for task
structures that many tasks run in parallel like TASKNC. In Fig. 9 and
Fig. 10, more PUs will lead to larger Tend improvement, but the
trends are different for different task structures. For TASKFC and
TASKSP in which tasks are highly correlated, the improvement is
limited. For TASKNC with a larger solution space, Tend improvement
increases quickly until the task number is not large enough to exert
the advantage of a larger PU number.

113

Table 3. Simulated Annealing/Static Scheduling+On-Line Adjustment/Greedy Heuristic 1/stop-go(GH1) methods on 4×4 MPSoC

CP and PT of GH1 is 33.8% to 100% and up to 11.1% less than

CP and PT of stop-go(GH1) method, respectively. Meanwhile, CP
and PT of GH2 is 30.8% to 100% and up to 38.3% less than CP and
PT of stop-go(GH2) method, respectively.

16 25 36 49 64

2

3

T
en

d /
 T

en
d_i

60TASK
NC

16 25 36 49 64
1

1.05

1.1

60TASK
FC

GH1
GH2
stop-go(GH1)
stop-go(GH2)

16 25 36 49 64
1

2

3

4

MPSoC mesh size

T
en

d /
 T

en
d_i

80TASK
NC

16 25 36 49 64
1

1.1

1.2

MPSoC mesh size

80TASK
FC

Fig. 10. GH1/GH2/stop-go(GH1)/stop-go(GH2) methods on 60/80
task scheduling on 4×4~8×8 MPSoC.

Tend improvement of GH1 is better than that of GH2 except five
cases (40 TASKTT on 4×4 MPSoC, 60 and 80 TASKNC on 7×7 and
8×8 MPSoC). The Tend improvement of GH1 comparing with GH2
is up to 40.4% of Tend_i, and the degradations in the five cases are
1%, 8.8%, 17.9%, 23.9% and 50.2% of Tend_i in-order. Comparing
with GH2, the benefit of GH1 is that the longer task will start
earlier, however the expense is that the longer task may be
interrupted more frequently. When the PU number is large enough,
Tend of stop-go(GH1) is closed to that of stop-go(GH2).

Our experiments above show that for different kinds of tasks
with large task number, GH is more efficient than stop-go method
on 4×4 to 8×8 MPSoC. The improvement of GH is increasing
along with the increase of PU number. For most task test benches,
GH1 gets better performance than GH2.

8. Conclusions
In this paper, we for the first time formulate an on-line task

scheduling problem with the consideration of power gating induced
P/G noise based on our detailed P/G noise analysis platform for
MPSoC. An efficient on-line Greedy Heuristic algorithm that
adapts well to run-time variations and real-time decision
requirement is proposed to reduce noise protection penalty and
improve MPSoC performance. The experiment results show that
the GH algorithm can achieve on average 26% performance
improvement together with on average 73% noise protection
penalty saving compared with the corresponding stop-go method.

Impacts on MPSoC performance of considering different factors
during on-line scheduling decisions are also studied.

References
[1] F. Mohamood, M. Healy, S. K. Lim, and H.-H. Lee, “Noise-direct: A technique for

power supply noise aware floorplanning using microarchitecture profiling,” ASP-
DAC’07, pp. 786–791, Jan. 2007.

[2] M. Healy, F. Mohamood, H.-H. Lee, and S. K. Lim, “A unified methodology for power
supply noise reduction in modern microarchitecture design,” ASP-DAC’08, pp. 611–616,
March 2008.

[3] K. Shi and D. Howard, “Challenges in sleep transistor design and implementation in
low-power designs,” DAC’06, pp. 113–116, July 2006.

[4] S. Kim, S. Kosonocky, and D. Knebel, “Understanding and minimizing ground bounce
during mode transition of power gating structures,” ISLPED ’03, pp. 22–25, Aug. 2003.

[5] J. Gu, H. Eom, and C. Kim, “A switched decoupling capacitor circuit for on-chip supply
resonance damping,” IEEE Symposium on VLSI Circuits, pp. 126–127, June 2007.

[6] H. Jiang and M. Marek-Sadowska, “Power-gating aware floorplanning,” ISQED’07, pp.
853–860, March 2007.

[7] A. Davoodi and A. Srivastava, “Wake-up protocols for controlling current surges in
mtcmos-based technology,” ASP-DAC, vol. 2, pp. 868–871, Jan. 2005.

[8] A. Ramalingam, A. Devgan, and D. Z. Pan, “Walk-up scheduling in mtcoms circuits
using successive relaxation to minimize ground bounce,” J. of Low Power Electronics,
vol. 3, no. 1, pp. 1–8, 2007.

[9] H. Jiang and M. Marek-Sadowska, “Power gating scheduling for power/ground noise
reduction,” DAC’08, pp. 980–985, June 2008.

[10] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and voltage selection for energy
minimization,” DAC’02, pp. 183–188, 2002.

[11] J. Liu, P. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware scheduling under timing
constraints for mission-critical embedded systems,” DAC’01, pp. 840–845, 2001.

[12] J. Hu and R. Marculescu, “Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints,” DATE’04, vol. 1, pp. 234–
239 Vol.1, Feb. 2004.

[13] P. Rong and M. Pedram, “Power-aware scheduling and dynamic voltage setting for tasks
running on a hard real-time system,” ASP-DAC’06, Jan. 2006.

[14] A. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task scheduling in
MPSoCs,” DATE ’07, pp. 1–6, April 2007.

[15] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Temperature-aware MPSoC
scheduling for reducing hot spots and gradients,” ASPDAC, pp. 49–54, March 2008.

[16] T. Chantem, R. Dick, and X. Hu, “Temperature-aware scheduling and assignment for
hard real-time applications on MPSoCs,” DATE ’08, pp. 288–293, March 2008.

[17] V. J. Reddi, M. S. Gupta, G. Holloway, M. D. Smith, G.-Y. Wei, and D. Brooks,
“Voltage emergency prediction: a signature-based approach to reducing voltage
emergencies,” HPCA-15, Raleigh, NC, February, 2009.

[18] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks, “DeCoR: a
delayed commit and rollback mechanism for handling inductive noise in
microprocessors, ” HPCA-14, Salt Lake City, UT, February 2008.

[19] A. Todri, M. Marek-Sadowska, and J. Kozhaya, “Power supply noise aware workload
assignment for multi-core systems,” ICCAD’08, pp. 330–337, Nov. 2008.

[20] K. Shakeri and J. Meindl, “Compact physical IR-drop models for chip/package co-
design of gigascale integration (GSI),” Electron Devices, IEEE Transactions on, vol. 52,
no. 6, pp. 1087–1096, June 2005.

[21] S. Pant and E. Chiprout, “Power grid physics and implications for cad,” DAC’06, pp.
199–204, 2006.

[22] G. Huang, D. Sekar, A. Naeemi, K. Shakeri, and J. Meindl, “Compact physical models
for power supply noise and chip/package co-design of gigascale integration,” Electronic
Components and Technology Conference, pp. 1659–1666, May 29-June 1 2007.

[23] ITRS 2007. [Online]. Available: http://www.itrs.net/
[24] Nanoscale Integration and Modeling (NIMO) Group, ASU. Predictive Technology

Model (PTM). [Online]. Available: http://www.eas.asu.edu/˜ptm/
[25] Nangate Open Cell Library. [Online]. Available: http: //www. opencelllibrary.org
[26] K. Pruhs et al, “Handbook of scheduling algorithms, models, and performance analysis,”

2004 by CRC Press.

Task# Task
structure

Tend_i

Static(SA) SSOLA GH1 Stop-go(GH1)
Tend CP PT Tend CP PT Tend CP PT Tend CP PT

6 NC 19144 19544 4 12 21819 12 12 20544 8 12 23744 30 12
8 NC 13197 13997 14 16 17313 33 16 15797 20 16 19397 56 16
10 NC 16858 18058 28 18 20496 45 18 20658 40 20 24658 90 20
12 NC 18825 20025 42 20 22648 75 22 22625 64 24 28225 132 24
20 NC 17510 21112 64 28 24194 151 30 24910 171 32 30110 240 32
30 NC 18082 34669 183 42 39042 333 46 29924 154 32 32668 240 32
40 NC 20382 46392 238 54 54559 386 52 33834 125 32 37015 240 32
40 SP 68875 74084 120 64 84797 172 66 71075 20 16 75075 56 16
40 TT 57501 64395 164 58 74243 372 62 70101 287 52 78901 450 54
40 FC 73239 76314 98 64 88090 300 68 78540 40 28 84140 114 28
60 NC 21819 65871 517 86 80809 735 80 48567 159 32 51435 240 32
60 SP 98833 112754 206 110 130163 524 110 101433 20 16 105033 56 16
60 TT 70513 90672 421 88 107019 485 90 82515 221 40 94026 540 56
60 FC 114088 127358 150 100 140506 548 108 119146 56 36 128189 156 36
80 NC 20632 78089 722 102 104635 462 106 59050 131 32 61428 240 32
80 SP 131696 150433 296 144 178381 873 142 134296 20 16 137896 56 16
80 TT 72606 109376 740 124 130751 527 116 91144 189 36 95936 278 36
80 FC 131696 154669 282 138 177013 949 144 136696 86 52 152296 252 52

114

